Highly efficient and durable PtCo alloy nanoparticles encapsulated in carbon nanofibers for electrochemical hydrogen generation†

TingTing Yang, Han Zhu, Meng Wan, Liang Dong, Ming Zhang and MingLiang Du*

PtCo/CNFs exhibit extraordinary catalytic activity and durability for hydrogen evolution reaction, even approaching the performance of the commercial Pt/C catalyst, which can be attributed to the alloy structure and the encapsulation of PtCo alloy nanoparticles in CNFs.

Hydrogen is proposed as a promising clean and renewable energy source to meet the increasing energy and environmental demands.1,2 Water electrolysis has been widely investigated as a highly important method for hydrogen generation through the hydrogen evolution reaction (HER). Notwithstanding the tremendous efforts that have been made to find alternative materials, it must be pointed that platinum (Pt) still plays an irreplaceable role in the HER due to its high catalytic activity. However, the prohibitive cost and scarcity of Pt limit its practical applications.3 Toward this end, decreasing Pt usage is always the ultimate goal for electrocatalyst design to achieve cost-effective hydrogen production; meanwhile, HER catalysts with long term stability and high activity are also urgently needed.1,3

In this regard, a way to solve these problems is to make a Pt alloy with a 3d transition metal (such as cobalt, nickel and iron) because this new type of material exhibits unusual properties4 together with high stability,5 and it is expected to have enhanced catalytic activity due to the modification of the Pt electronic structure (the correlation of the ligand and strain effects for example).6,7 Generally, the PtCo alloy demonstrates superior activity to pure Pt and excellent electrochemical self-stability toward the oxygen reduction reaction (ORR).8,9

The preparation of metal nanoparticles (NPs) encapsulated in carbon nanofibers (CNFs) can efficiently confine the NPs’ size and prevent agglomeration during the catalytic process.10,11 It should be mentioned that the interconnected 3D architecture of the CNF network is regarded as an ideal support material, which can enable rapid electron transport and fast gas diffusion, providing large interfaces and interstices between the catalytically active sites and the electrolyte.12

Herein, with respect to the catalytic activity and strong durability of the PtCo alloy in ORR and the advantage of CNFs as a catalyst support material, we propose a facile strategy for fabricating PtCo alloy NPs encapsulated in carbon nanofibers (PtCo/CNFs) by integrating the electrospinning and graphitization processes. After graphitization, uniform PtCo alloy NPs were formed in situ and encapsulated in the matrix of CNFs.

Encouraged by the above-mentioned promising findings, we then further evaluated the HER catalytic performance of PtCo/CNFs. Surprisingly, the PtCo/CNFs (with a Pt content of ca. 5 wt%) exhibit amazing catalytic activity and cyclic performance, which even approaches that of the commercial Pt/C (20 wt%) catalyst. Therefore, the present investigation may provide a fundamental insight into designing new structures with high catalytic performance, especially for HER.

The morphology of PtCo/CNFs was determined by field-emission scanning electron microscopy (FESEM, Fig. 1a) and transmission electron microscopy (TEM, Fig. 1d and e), which clearly disclosed that PtCo alloy NPs were homogeneously dispersed in the CNFs with diameters of ca. 10.9 nm and without any aggregation. Likewise, the Pt NPs and Co NPs were evenly grown on the surface of CNFs (Fig. 1b and c), respectively. The high-resolution TEM (HRTEM) micrograph (Fig. 1f) presents a crystalline PtCo alloy, and it clearly identifies that the d-spacings for NPs are 0.229 and 0.262 nm corresponding to the (111) and (200) planes of face-centered cubic (fcc) crystals,13 respectively, indicating the formation of the PtCo alloy.

The high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) observations are also consistent with the uniform dispersion of PtCo alloy NPs due to the space-confined growth (Fig. 2a).14 Additionally, elemental mapping further evidenced the formation of the PtCo/CNFs (Fig. 2b), in which both the carbon and nitrogen species were evenly distributed throughout the nanocomposites, while Pt and Co were homogeneously overlaid in individual NPs with no...
higher angles compared to those of the Pt/CNFs. Meanwhile, that the diffraction peaks of PtCo/CNFs shift slightly toward fcc crystalline Pt (JCPDS, 04-0802). It is interesting to note the diffraction peaks are consistent with the standard pattern crystalline structure of graphitic carbon in CNFs. For Pt/CNFs,

\[
\text{Co}_7\text{Pt}_{13}\text{O}_{18}\text{C}
\]

(JCPDS 75-1621) at approximately 23.5°. CNFs exhibits a characteristic (002) plane peak for graphite (JCPDS, 04-0082). It is interesting to note that the diffraction peaks of PtCo/CNFs shift slightly toward higher angles compared to those of the Pt/CNFs. Meanwhile, the three diffraction peaks appearing at 41.5° (111), 47.6° (200) and 69.9° (220) are consistent with those of the PtCo alloy with a fcc structure, pointing out a lattice contraction arising from the partial substitution of Pt atoms by Co atoms to form an alloy phase.5,9,15

XPS was further used to verify the formation of the PtCo alloy. For PtCo/CNFs, two obvious peaks at 72.0 and 75.1 eV (Fig. 2e) are ascribed to Pt 4f7/2 and Pt 4f5/2, respectively. Strikingly, compared to 71.4 and 74.5 eV that are expected for pure Pt in Pt/CNFs, the Pt 4f peaks of PtCo/CNFs are shifted to higher energies upon alloy formation with Co, which is in line with the reported theory.16 Meanwhile, the upward shift of the core level of the PtCo alloy is due to the charge transfer from Co to Pt atoms.5,17

To decode the electrochemical performance of PtCo/CNFs (with Pt and Co content of ca. 5 and 2.4 wt%, respectively) toward HER, linear sweep voltammetry (LSV) was performed in oxygen-free 0.5 M H2SO4 solution. As a control, similar measurements for the commercial Pt/C catalyst (Johnson-Matthey, 20 wt%), CNFs, Pt/CNFs (ca. 8.5 wt% Pt) and Co/CNFs (ca. 5.3 wt% Co) were also tested. As expected, the commercial Pt/C catalyst exhibits extraordinarily high HER activity with a near zero onset overpotential versus the reversible hydrogen electrode (RHE) (Fig. 3a). Interestingly, the onset overpotential of PtCo/CNFs is close to that of commercial Pt/C, indicating that the PtCo alloy can significantly improve the catalytic activity. Furthermore, PtCo/CNFs afford a current density of 5.7 mA cm−2 at −63 mV, which is very near to that of commercial Pt/C (about −57 mV) and much lower than those of Pt/CNFs and Co/CNFs at −104 mV and −475 mV, respectively. In addition, PtCo/CNFs exhibit much higher mass activity than Pt/CNFs and Co/CNFs (Fig. S1, ESI†), which also demonstrates the extraordinary electrocatalytic activity of the PtCo/CNFs.

A small Tafel slope of a catalyst is desirable for practical applications because it leads to a strongly enhanced HER rate at a moderate overpotential increase, which is an inherent property of electrocatalysts. As shown in Fig. 3b, Tafel plots derived from the polarization curves were constructed. Again, the as-synthesized PtCo/CNFs exhibit an extraordinary low Tafel slope, even identical to that of commercial Pt/C (28 mV dec−1), which is quite lower than those of Pt/CNFs (40 mV dec−1), Co/CNFs (109 mV dec−1) and CNFs (135 mV dec−1), further indicating its favorable reaction kinetics (see Fig. 3b). Then, electrochemical impedance spectra (EIS) measurements were also performed at −0.25 V vs. RHE, as presented in Fig. 3c. The charge-transfer resistance (Rct) is related to the electrocatalytic kinetics and, clearly, the lower Rct of PtCo/CNFs suggests a faster HER kinetics at higher overpotential.

As is well known, the commercial Pt/C catalyst exhibits a very high HER activity and is the most efficient HER catalyst. However, in the present investigations as described above, the synthesized PtCo/CNFs catalyst with a Pt content of ca. 5 wt% exhibits extraordinary high HER activity, which is quite close to that of commercial Pt/C (20 wt%). The extraordinary high catalytic performance of the PtCo/CNFs could be rationalized as follows: (1) the incorporation of Co into a PtCo alloy helps to maintain free and active Pt sites for electrocatalytic reactions due to a bifunctional mechanism.29 (2) The interconnected 3D...
architecture of the CNF network can enable rapid electron transport and fast gas diffusion because CNFs provide a large area of electrolyte/nanofiber interfaces and interstices between the fibers.12,21

Apart from having a high catalytic activity, the long term durability of a catalyst electrode toward HER is another critical requirement for energy conversion and storage systems, especially for practical applications.22 After 1000 cycles at a scan rate of 100 mV s⁻¹ between 0 and 1.2 V vs. RHE, the polarization curve of PtCo/CNFs was still the same as the initial one, and only a negligible cathodic current density loss was observed (Fig. 3d). In addition, as shown in the inset of Fig. 3d, the PtCo/CNFs electrode showed no obvious decrease in the CV curve after 1000 potential cycles. (e) Chronoamperometric response (j–t) recorded for a PtCo/CNFs membrane which was cut into a neat square (1 × 1 cm) at a constant applied potential of −0.056 V vs. RHE. The PtCo/CNFs membrane catalyst was directly used as the working electrode. Inset in panel e: digital photo of the H₂ bubbles formed on the PtCo/CNFs membrane at a time point of 6 h, and the enlargement of the area is denoted by a dashed circle. (f) TEM images of PtCo/CNFs after stability testing with the inset showing the HRTEM image. All of the measurements were performed in an Ar-saturated 0.5 M H₂SO₄ solution.

Notes and references