Two-dimensional molybdenum disulfide and tungsten disulfide interleaved nanowalls constructed on silk cocoon-derived N-doped carbon fibers for hydrogen evolution reaction

QingFa Wang a,**, RuoPing Yanzhang a, XiaoNa Ren a, Han Zhu b,*, Ming Zhang b, MingLiang Du b

a Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, PR China
b Department of Materials Engineering, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China

Article Info

Article history:
Received 14 June 2016
Received in revised form 23 July 2016
Accepted 28 July 2016
Available online xxxx

Keywords:
Silk derived N-doped carbon
Molybdenum sulfides
Tungsten disulfide
Hydrogen evolution reaction
Electrocatalysts

Abstract

Finding cost-effective, active and durable catalyst materials for energy applications, such as electrocatalytic hydrogen production, is an intriguing challenge. Here, a facile and effective approach to the design and construction of two-dimensional MoS2 and WS2 interleaved nanowalls with maximum exposures of active edges on silk-derived N-doped carbon fibers (SNCF) was demonstrated. The morphological evolutions of the MoS2 and WS2 nanocrystals on the SNCF from crescent-like nanosheets to an interleaved nanowall network can be obtained by adjusting the concentrations of the Mo and W precursors. These robust MoS2/SNCF and WS2/SNCF electrocatalysts exhibit prominent hydrogen evolution reaction (HER) activities with onset potentials of −40 and −96 mV and Tafel slopes of 60 and 66 mV dec−1, respectively. The overpotentials (η) at j = −10 mA cm−2 for MoS2/SNCF and WS2/SNCF are −102 and −157 mV, respectively. In addition, MoS2/SNCF and WS2/SNCF are both able to sustain continuous HER operation for 10 h under working conditions with only a slight degradation in current densities, implying excellent durability and a prospect for practical applications.

© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Hydrogen is a clean and sustainable energy carrier that provides an environmentally friendly alternative energy source to meet future global energy demands [1]. The production of hydrogen by electrocatalytic or solar-driven water splitting requires highly efficient and robust catalyst materials [1,2]. The platinum group is at present the most active catalysts for the hydrogen evolution reaction (HER). Unfortunately, the high cost and low elemental abundance of the platinum group metals limit their application in large-scale hydrogen...
production [3,4]. Motivated by this challenge, the search for cost-effective, Earth-abundant materials with both high HER activity at low overpotentials and excellent stability has recently attracted significant research interest and has become an important pursuit toward enabling a hydrogen economy [5,6].

Various classes of Earth-abundant transition metal compounds, such as MoS2 [7], WS2 [8], CoS2 [1], CoSe2 [9], and MoP [10] have been recently identified as promising HER electrolytes. Two-dimensional MoS2 or WS2 have been considered as the most promising catalysts because their hydrogen binding energies are comparable to that of the Pt-group metals, as determined by density functional theory calculations [7,8]. From both theoretical calculations and experimental studies, it is known that the HER active sites arise from the edges rather than the basal plane of an MoS2 sheet [7,8]. Therefore, to realize the ideal catalytic activity of MoS2, we should find an effective approach to design and construct novel structures of MoS2 with exposed active edges. In addition, the poor conductivity of semiconducting MoS2 limits the electron transfer and the electrocatalytic efficiency for the HER.

Carbon materials, such as graphene [11], carbon nanotubes [12], porous carbon [13] and carbon nanofibers [14], have been widely used to improve the electrochemical performance of catalysts. Recently, our group has reported that carbon materials not only serve as substrates but can also confine the growth of MoS2 or WS2, leading to novel nanostructures of two-dimensional transition metal sulfides with abundant active sites and high electrocatalytic activity toward the HER [15–17]. Carbon materials derived from natural resources and their conversion into functional building units are highly desirable [18,19]. Silk fiber is a filamentous natural protein fiber made of repeated amino acid patterns [20]. Researches on silk fibers are generally focused on its applications in the biomedical and clinical fields because of its excellent biocompatibility and biodegradability [21–23]. Moreover, silk fibers have a wealth of polypeptides and a high content of C, N, and O elements [21–25], which might provide a great opportunity for conversion into naturally derived heteroatom-doped carbon catalysts.

Herein, we utilized the chemical composition and fibrous structure of silk fibers to produce N-doped carbon fibers through simple pyrolysis. The resulting silk-derived N-doped carbon fibers (SNCF) serve as an effective substrate for the design and construction of MoS2 and WS2 nanowalls with exposed active-edges. The morphological evolution of MoS2 and WS2 nanocrystals on the SNCF from crescent-like nanosheets to an interleaved nanowall network can be obtained by adjusting the concentrations of the Mo and W precursors. The HER performances of various catalysts were measured to confirm the realization of the active-edge control, and a comprehensive investigation of the growth mechanisms was provided. The present investigation aimed to determine whether nanowalls with vertically aligned and densely packed MoS2 and WS2 nanosheets on SNCF possess the most exposed active edges and obtained outstanding HER performance. The robust MoS2/SNCF and WS2/SNCF electrocatalysts exhibited predominant HER activity with onset potentials of −40 and −96 mV and Tafel slopes of 60 and 66 mV dec−1, respectively. The overpotentials (η) at j = −10 mA cm−2 (mV) for MoS2/SNCF and WS2/SNCF are −102 and −157 mV, respectively. In addition, MoS2/SNCF and WS2/SNCF are both able to sustain continuous HER operation for 10 h under working conditions with only a slight degradation in the current density. The results reveal a stability under HER conditions and a strong coupling of the MoS2 and WS2 nanowalls to the SNCF, implying excellent durability and a prospect for practical applications.

Experiment section

Materials

Silk cocoons were prepared by feeding the Bombyx mori in our lab. Pt/C (20 wt %) and the Nafion solution (5 wt %) were purchased from Sigma–Aldrich. (NH4)2MoS4, (NH4)2WS4 and dimethyl formamide (DMF, 95%) were obtained commercially from Shanghai Civi Chemical Technology Co., Ltd. All chemicals were used as received without further purification. The water used throughout all experiments was purified through a Millipore system.

Preparation of the silk-derived carbon fibers (SNCF)

Natural silk cocoons were prepared by feeding the Bombyx mori in our lab. In brief, the obtained silk cocoons were treated with distilled water in an ultrasonic bath for 2 h to remove adsorbed impurities. Then, the silk cocoons were dried at 50 °C for 12 h. The cleaned silk cocoons were placed into a chemical vapor deposition (CVD) furnace and carbonized at 900 °C at a heating rate of 4 °C/min for 3 h in an Ar/NH3 atmosphere. The obtained silk-derived N-doped carbon fibers were treated with 1 M HNO3 three times, washed with deionized water and dried at 60 °C for 24 h in a vacuum oven.

Preparation of the two-dimensional MoS2 and WS2 nanowall network on silk-derived carbon fibers

The as-prepared silk-derived carbon fibers served as the substrate for the growth of the two-dimensional MoS2 and WS2 nanosheets. Briefly, 110 mg of (NH4)2MoS4 was dissolved in 50 mL of a DMF solution containing 330 mg of the as-prepared silk-derived N-doped carbon fibers. The mixture was stirred at room temperature for 2 h, transferred to a 50 mL Teflon-lined autoclave and kept in an oven at 200 °C for 12 h. Finally, the product was centrifuged, washed with distilled water, and then centrifuged repeatedly to remove the DMF. Pure MoS2 nanoflowers were prepared using the same procedure in the absence of the SNCF. The preparation of WS2 nanowalls were using the same procedure.

Fabrication of the catalyst-modified glassy carbon electrode (GCE)

To prepare the working electrode, 3 mg of the catalyst and 25 μL of the 5 wt % Nafion solution were dispersed in 1 mL of an isopropanol/water (3:1, v/v) mixed solvent, followed by ultrasonication for at least 30 min. Then, 5 μL of the mixture...
was dropped onto the glassy carbon electrode (loading: ~0.36 mg cm\(^{-2}\)).

Electrochemical measurements

All electrochemical tests were performed at room temperature in a standard three-electrode system controlled by an Autolab potentiostat/galvanostat (Model PGSTAT302N) workstation. A graphite rod and a saturated calomel electrode (SCE) were used as the counter and reference electrodes, respectively. Prior to the start of each experiment, the electrolyte was degassed by bubbling Ar for 30 min. The electrochemical impedance spectroscopy (EIS) measurements were carried out in the same configuration at an overpotential of \(\eta = -300 \text{ mV} \) from \(10^6 \) to 0.02 Hz with an AC voltage of 5 mV. All of the potentials reported in the present investigation were against a reversible hydrogen electrode (RHE). For the conversion of the obtained potential (vs Hg/HgO) to the RHE, the potentials were referenced to the RHE by the following summation

\[
0.244 + 0.059 \text{ pH}\ V
\]

for SCE.

Characterizations

The morphologies of the as-prepared samples were investigated using a JSM-2100 transmission electron microscope (JEOL, Japan) at an acceleration voltage of 200 kV. Field-emission scanning electron microscopy (FE-SEM, JEOL, Japan) was performed using a JSM-6700F at an acceleration voltage of 3 kV. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images, STEM mapping, and line-scan energy dispersive X-ray spectroscopy (EDX) were recorded using a STEM (Tecnai G2 F30S-Twin, Philips-FEI) at an acceleration voltage of 300 kV. X-ray diffraction (XRD) patterns were analyzed using a Bruker AXS D8 DISCOVER X-ray diffractometer with Cu \(K_\alpha \) radiation (\(\lambda = 1.5406 \text{ Å} \)) at a scanning rate of 0.02 \(20 \) \text{ s}^{-1} in a 20 range of \(10^\circ \sim 80^\circ \). X-ray photoelectron spectra of the products were recorded using an X-ray photoelectron spectrometer (Kratos Axis Ultra DLD) with an Al (mono) \(K_\alpha \) source (1486.6 eV). The Al \(K_\alpha \) source was operated at 15 kV and 10 mA. Raman spectra were recorded using a Renishaw in via Raman microscope (LabRAM HR800) with a 532 nm laser excitation source.

Results and discussion

Silk cocoons produced by the B. mori silkworm are among the most abundant polymers in nature, and more than 480,000 tons per year are cultivated all over the world [26,27]. The silk fibers consist of fibrous proteins, known as fibroin, and sericin, which surrounds the fibroin fibers and cements them together. The silk cocoon consists of hundreds of individual fibers with diameters in the range of 10–20 \(\mu \text{m} \), as shown in Fig. S1. Twin fibers with smooth surfaces are distributed randomly, forming a 3D network. After the carbonization at 900 °C in an Ar/NH\(_3\) atmosphere, the organic silk fibers convert into carbonized fibers (CFs), as shown in Fig. 1a. There are many small pores randomly distributed across the surfaces. The average diameter of the CFs decreases to approximately 1 \(\mu \text{m} \) because of the graphitization process. A high-resolution TEM image reveals that the CF surface exhibits a small porous network (inset in Fig. 1c). In addition, Fig. 1c reveals the disordered lattice fringes of carbon, demonstrating the partial crystallinity. The silk-derived carbon fibers are used as the substrate for the growth of the two-dimensional MoS\(_2\) nanocrystals. As shown in Fig. 1b, large amounts of the MoS\(_2\) crystals were vertically and densely grown on the surfaces of the SNCF, leading to the formation of MoS\(_2\) nanowalls.

Fig. 1 TEM images of (a) the SNCF and (b) the MoS\(_2\)/SNCF. (c) An HRTEM image of the SNCF, and the inset in (c) is the low magnification TEM image of the SNCF. (d) A high magnification TEM image of MoS\(_2\)/SNCF, and the inset in (d) is the low magnification TEM image of the MoS\(_2\)/SNCF.
throughout the SNCF. The vertical MoS$_2$ nanosheets interlace on the surfaces of the SNCF and form nanowalls. As shown in Fig. 1d, from the TEM images, there are many oval holes among the interlaced MoS$_2$ nanowalls, forming a 3D network through strong interactions. The vertical MoS$_2$ nanowalls on the SNCF have a maximum exposure of edges, which are the active sites for the electrocatalytic HER.

In contrast, as shown in Fig. S2, pure MoS$_2$ synthesized without the SNCF exhibit substantial folding and agglomeration. They resemble rosemary buds with lots of edges buried inside because this configuration is thermodynamically stable. In the presence of the SNCF, as exhibited in Fig. 1b, the MoS$_2$ nanosheets vertically and densely grew on the SNCF with a large amount of edges exposed. From this point of view, the SNCF substrate is significant for the achievement of the edge-rich morphology.

As shown in Fig. 2a, the MoS$_2$ nanowalls consist of several layers, and the holes in the nanowalls exhibit an oval morphology. The exposed edges of the MoS$_2$ nanowalls clearly exhibit an interlayer distance of 0.67 nm, corresponding to the (002) plane of MoS$_2$. In the HAADF-STEM image of MoS$_2$/SNCF, the interlaced MoS$_2$ nanowalls and the 3D network formed from strong interactions are clearly observed (Fig. 2b). The STEM image and corresponding EDX elemental mapping images of MoS$_2$/SNCF are shown in Fig. 2c–g. The strong and uniform signals of carbon and nitrogen correspond to the SNCF substrate, indicating the formation of an N-doped carbon nanostructure. In addition, the signals for Mo and S are well matched with the white MoS$_2$ morphology in Fig. 2c, confirming the successful preparation of the interlaced MoS$_2$ nanowalls and the 3D network.

XRD and Raman spectroscopy were carried out to further investigate the structure of the products. The SF cocoon displays a sharp main peak at 19.6°, and the peak corresponds to the (200) diffraction peak of silk, exhibiting a typical β-sheet crystalline structure (Fig. 3) [28]. After the graphitization process, the SNCF exhibits two characteristic peaks located at approximately 2θ = 24° and 44°, corresponding to the (002) and (101) planes of the hexagonal graphite (JCPDS card no. 41-1487) [29]. After the growth of the interlaced MoS$_2$ nanowalls, the MoS$_2$/SNCF hybrid exhibits five diffraction peaks located at 14.7°, 24.3°, 33.3°, 44.1° and 64.5°. The sharp peak at 14.7° and the other three weak peaks at 33.3°, 44.1° and 64.5° correspond to the (002), (100), (006) and (107) planes of the hexagonal MoS$_2$ (2H-MoS$_2$, JCPDS 37-1492) [30,31]. In comparison, the XRD pattern of pure MoS$_2$ was shown in Fig. S3. Because of the growth of MoS$_2$ nanowalls on the SNCF surfaces, the (002) plane ascribed to carbon becomes weak, indicating the dense growth of the MoS$_2$ nanowalls. It is found that the MoS$_2$/SNCF exhibits an intense peak at 14.7° that is ascribed to the (002) plane of MoS$_2$; relatively weaker peaks are noted for the (002), (100), (006) and (107) planes. It is demonstrated that most of the MoS$_2$ nanosheets grew vertically on the surfaces of the SNCF and further formed the integrated MoS$_2$ nanowalls and 3D network, leading to a maximal exposure of the (002) planes of MoS$_2$.

Raman spectroscopy is an effective tool to detect the doping effect in the silk-derived carbon fiber. As shown in Fig. 4a, the Raman spectrum of the SNCF exhibits the D band
at 1339 cm$^{-1}$, the G band at 1613 cm$^{-1}$ and the 2D band at 2708 cm$^{-1}$ [32]. The relatively high intensity of the D band for the SNCF is attributed to the introduction of nitrogen atoms into the carbon structure [32,33]. It is known that defects may include bond disorder and vacancies in the carbon lattice induced by nitrogen doping [32,33]. The Raman spectrum of MoS$_2$/SNCF shown in Fig. 4b confirms the formation of a pure MoS$_2$ phase on the SNCF. The MoS$_2$ nanowalls exhibit sharp peaks at 380 cm$^{-1}$ (E$_{2g}$) and 406 cm$^{-1}$ (A$_1g$) that are due to the first order Raman vibration modes within the S–Mo–S layer [29,30,34].

XPS measurements were further performed to elucidate the chemical structure, the atomic valence states and the composition of pure SFs and the MoS$_2$/SNCF hybrid. The overall XPS spectrum measured for the pure SFs exhibits signals for carbon, nitrogen, and oxygen, as shown in Fig. 5a. The C 1s XPS spectrum of the pure silk cocoon was fitted by four peaks (Fig. 5a) with binding energies (BEs) at approximately 284.5, 285.2, 286.0 and 287.5 eV, which are attributed to –C–C/H, –C–N, C–OH/C–N and –O═C–N groups, respectively [35,36]. The O═C–N (287.8 eV) group reflects the carbon on the peptide backbone, while the –C–H (284.6 eV) group reflects the aliphatic C–C carbons of the amino acid pendant groups. The peak associated with the O═C–N group in the peptide backbone (286.7 eV) indicates that more of this peptide backbone group is associated with β-structures that are located at the surface than amorphous structures [37]. The N 1s spectrum for the silk fibers (Fig. 5b) exhibits a single main peak with a BE of 399.3 eV, corresponding to the amino acids on the silk fiber surfaces.

After the graphitization process, the C 1s spectrum of the as-prepared SNCF exhibits four peaks with BEs at 284.7, 285.5, 286.5 and 289.1 eV (Fig. 5c). The peak at 284.6 eV corresponds to graphitic carbon atoms [39,40]. The position of the C 1s line of the composite is shifted down by ~0.2 eV from that of the pristine SFs (284.6 eV), indicating a charge transfer from the SNCF to the MoS$_2$ [34] that may improve the catalytic activity.

The N 1s spectrum (Fig. 5d) of the SNCF was deconvoluted into three peaks with BEs of 401.3, 400.3 and 398.4 eV, which are attributed to the quaternary (N-Q), the pyridinic nitrogen group (N-5) and the pyridinic nitrogen group (N-6), respectively [37–39]. These results indicate the conversion of the N atoms from the amino groups in the SFs into N-6, N-5 and N-Q during the carbonization process. It has been reported that pyridinic- and graphitic-N play important roles in the catalytic activity of the carbon catalyst because of their high charge densities [39,40]. In the present investigation, the pyridinic- and graphitic-N are the predominant species, which may enhance the electrocatalytic activity for the HER. In addition, the STEM-EDX mapping images (Fig. 2) exhibit the homogeneous distribution of nitrogen across the surface, which could be beneficial for the activity of the resulting catalyst.

The overall XPS spectrum measured for the MoS$_2$/SNCF hybrid exhibits signals for carbon, nitrogen, oxygen, molybdenum and sulfur, as shown in Fig. 5a. The C 1s and N 1s spectra of the MoS$_2$/SNCF hybrid did not change, indicating that the grown MoS$_2$ nanowalls did not affect the composition of the SNCF, as shown in Fig. 5b. The XPS C 1s spectrum of MoS$_2$/SNCF exhibits a single peak located at ~284.4 eV (Fig. 5c), and it is attributed to graphitic carbon atoms [39,40]. The spectrum of the MoS$_2$/SNCF hybrid has the same shape as that of the SCNFs, implying that the chemical state of the carbon atoms was not markedly changed after MoS$_2$ growth (Fig. 5c). However, the position of the C 1s line of the composite is downshifted by ~0.2 eV from that of the pristine SNCF (284.6 eV), indicating a charge transfer from the SNCF to the MoS$_2$ [34] that may improve the catalytic activity.

The high-resolution XPS of the Mo 3d region of the hybrid is shown in Fig. 5e, and it can be deconvoluted into four peaks. The distinct doublets at 223.2 and 229.4 eV correspond to the Mo 3d$_{3/2}$ and 3d$_{5/2}$ spin–orbit couplings, which are characteristic peaks of the MoS$_2$ crystal [41]. The other two peaks centered at 225.1 and 227.0 eV correspond to the S 2s binding energy of MoS$_2$ and that of the bridging disulfides (S$^{2-}_2$) [41,42]. The sulfur species were determined from the high-resolution XPS S 2p spectrum, as shown in Fig. 5f. The main doublet located at binding energies of 161.2 and 162.6 eV corresponds to the S 2p$_{3/2}$ and S 2p$_{1/2}$ lines of MoS$_2$ [41–43]. Meanwhile, the peak at 163.6 eV suggests the existence of bridging disulfides (S$^{2-}_2$) or polysulfides (S$_n^{2-}$). The high binding energy peak at 167.2 eV is assigned to the S$^{4-}$ species in the sulfate group.

![Fig. 4](image-url) – Raman spectra of the (a) SNCF and (b) MoS$_2$/SNCF hybrid.

These groups could be located at the edges of the MoS$_2$ layers, leading to the formation of an S-rich nanostructure, which may be related to high activity species.

Combining the results from SEM, TEM, XRD, Raman, and XPS, the novel vertically growth MoS$_2$ nanowalls on the SNCF is established. Such a structure could significantly increase the amount of exposed active edge sites without compromising the internal network conductivity for highly active electrocatalysis. This strategy is not only appropriate for the construction of MoS$_2$ nanowalls on the SNCF but also suitable for other two-dimensional nanocrystals, such as WS$_2$.

Fig. 6 displays the successfully prepared WS$_2$ nanosheets on an SNCF. At the same concentration as MoS$_2$/SNCF, the WS$_2$ nanocrystals exhibit a leaf-like morphology and are uniformly grown on the surfaces of the SNCF. As shown in Fig. 6b, one half of the individual leaf-like WS$_2$ nanosheets fit closely on the SNCF substrate, and the other half is vertically aligned on the SNCF, forming crescent-like WS$_2$ edges. The size of the WS$_2$ nanosheets ranges from 100 to 300 nm. As shown in Fig. 6a,b, most of the individual MoS$_2$ nanosheets exhibit the crescent-like morphology, and similarly, some adjacent WS$_2$ nanosheets tend to form an interleaved network. As shown in Fig. 6c, the TEM image clearly presents the interleaved WS$_2$ nanowalls. Fig. 6d exhibits the exposed edges of the WS$_2$ nanowalls, and the interlayer distance of 0.63 nm corresponds to the (002) plane of WS$_2$.

As shown in the HAADF-STEM image in Fig. 6e, the crescent-like WS$_2$ and interleaved WS$_2$ nanowalls both exist; however, the individual crescent-like WS$_2$ is dominant at this concentration of the W precursor. The STEM-EDX mapping images in Fig. 6f exhibit carbon, nitrogen, and oxygen elements, and the carbon signal corresponds with the nitrogen signal. The tungsten and sulfur signals match the crescent

Fig. 5 – The (a) C 1s and (b) N 1s XPS spectra of SF. The (c) C 1s and (d) N 1s XPS spectra of SNCF. The (e) Mo 3d and (f) S 2s XPS spectra of the MoS$_2$/SNCF hybrid.
morphology well, indicating the successful preparation of the WS2 nanosheets on N-doped CFs.

The electrocatalytic performance of the as-synthesized catalysts in acidic conditions (0.5 M H2SO4) was evaluated using linear sweep voltammetry (LSV). Without any active processes, the HER properties of all of the samples were directly examined. Fig. 7a displays the polarization curves of the MoS2 nanoflowers, the SNCF, the MoS2 nanoflowers mixed with the SNCF, WS2/SNCF, MoS2/SNCF and the Pt/C modified GCE. The SFs have a negligible HER activity, while the as-prepared SNCF exhibit a small HER activity. The MoS2 exhibits an intrinsic catalytic activity toward the HER with an onset potential of −280 mV. In sharp contrast, the MoS2/SNCF with a nanowall network possesses a greatly enhanced HER activity with a smaller onset potential (~−80 mV), accompanied by large cathodic current densities. An overpotential (η) of only 150 mV is required to achieve a current density (j) of −10 mA cm−2. In addition, the WS2/SNCF with a crescent-like morphology also demonstrates good HER activity with an onset potential of −120 mV. The commercial 20% Pt/C catalyst displays the best HER activity with a near zero onset potential.

Compared with the MoS2 grown on the SNCF, the MoS2 mixed with the SNCF exhibits only a weak HER activity with an onset potential of −220 mV, indicating the coupling between the SNCF and the grown MoS2 nanowalls. The N-doped CFs not only offer a minimum diffusive resistance to mass transport at a large electrode/electrolytes interface for the charge-transfer reaction but also provide easy ion transport by shortening the diffusion pathways [42,43]. The corresponding Tafel plots of the catalysts are shown in Fig. 7b. The MoS2 exhibits a Tafel slope of 210 mV dec−1, while WS2/SNCF exhibits a lower Tafel slope of 160 mV dec−1. The Tafel slope of MoS2/SNCF is approximately 70 mV dec−1, indicating that the Heyrovsky mechanism is mainly responsible for the HER process. The Pt/C presents the lowest Tafel slope of 30 mV dec−1, suggesting the involvement of the Tafel mechanism. The superior HER activity of the MoS2/SNCF with a nanowall network originates from the maximized exposure of

the active edge sites that is due to the dense and vertical growth of the MoS2 nanosheets on the SNCF.

Apart from the high active edge exposure, an efficient electron transfer is also essential for excellent HER performance. As shown in Fig. 7c, the Nyquist plots reveal that the charge transfer resistance (Rct) of MoS2/SNCF (44.2 Ω) is much lower than that of the SNCF (321.3 Ω) and MoS2 (238.4 Ω). The WS2/SNCF also exhibits a lower Rct of 151.7 Ω. The low value corresponds to a fast charge transfer at the interface between the electrocatalyst and the electrolyte and results in the excellent electrocatalysis for the HER. This is attributed to the synergistic effects of the N-doped carbon fibers as a highly conductive substrate to improve the conductivity of the hybrid. It is demonstrated that the MoS2 nanowalls grown on the SNCF possess a higher conductivity and better electron transfer ability than the MoS2 nanoflowers because of their strong electronic and chemical couplings. We further inspected the durability of MoS2/SNCF and WS2/SNCF, while continuously catalyzing the HER process. As shown in Fig. 7d, at a potential of ~0.3 V, the MoS2/SNCF and WS2/SNCF are both able to sustain continuous HER operation for 10 h under working conditions with a slight degradation in their current densities. This reveals stability under the HER conditions and suggests a strong coupling of the MoS2 and WS2 nanowalls with the SNCF, implying excellent durability and a prospect for practical applications (Table 1).

At the same precursor concentration, MoS2 and WS2 have different morphologies on the SNCF, suggesting that a variation in the concentration of the precursors may lead to various morphologies. As is well-known, the morphology of MoS2 affects the active edge exposure directly, and there is also a structure-dependent electrocatalytic activity for the HER. Therefore, we further investigated the morphological evolutions and the related HER activity by changing the precursor concentrations of Mo and W. The concentrations of the Mo precursor were varied from 1 to 3 mg mL\(^{-1}\). As shown in

Table 1 – Comparison of the HER parameters of several catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Onset η (mV)</th>
<th>Tafel (mV dec(^{-1}))</th>
<th>(j) at (η = 300) mV vs. RHE (mA cm(^{-2}))</th>
<th>(η) at (j = 10) mA cm(^{-2}) (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNCF</td>
<td>392</td>
<td>350</td>
<td>0.6</td>
<td>–</td>
</tr>
<tr>
<td>MoS2 nanoflowers</td>
<td>280</td>
<td>210</td>
<td>1.1</td>
<td>–</td>
</tr>
<tr>
<td>MoS2 nanoflowers mixed with SNCF</td>
<td>220</td>
<td>190</td>
<td>2.2</td>
<td>486</td>
</tr>
<tr>
<td>WS2/SNCF</td>
<td>120</td>
<td>160</td>
<td>9.8</td>
<td>310</td>
</tr>
<tr>
<td>MoS2/SNCF</td>
<td>80</td>
<td>70</td>
<td>61.6</td>
<td>151</td>
</tr>
<tr>
<td>20% Pt/C</td>
<td>10</td>
<td>30</td>
<td>–</td>
<td>53</td>
</tr>
</tbody>
</table>

Fig. 8 – FE-SEM, TEM, HAADF-STEM and STEM-EDS mapping images of the MoS2/SNCF hybrid prepared using different concentrations of the Mo precursor: (a–d) 1 mg mL⁻¹, (e–h) 1.5 mg mL⁻¹, (i–l) 2 mg mL⁻¹ and (m–p) 3 mg mL⁻¹.
Fig. 8a–c, at the low concentration of 1 mg mL\(^{-1}\), a large amount of small MoS\(_2\) nanosheets sized from 10 to 60 nm were uniformly and vertically grown on the SNCF and exhibit a crescent-like morphology. An HRTEM image of the small MoS\(_2\) nanosheets reveals the exposed edges, and the interlayer distance of 0.67 nm corresponds to the (002) plane of MoS\(_2\). STEM-EDX mapping images (Fig. 8d) also illustrate the crescent-like morphology of the small MoS\(_2\) nanosheets.

With increased concentration (1.5 mg mL\(^{-1}\)), the as-synthesized MoS\(_2\) nanosheets become larger (20–100 nm) and exhibit a plate-like morphology. Unlike the small vertical MoS\(_2\) nanosheets, the larger sized MoS\(_2\) nanoplates aggregate, as verified by Fig. 8g,h. Notably, with a higher concentration of 2 mg mL\(^{-1}\), the whole SNCF substrate is covered with dense vertical MoS\(_2\) nanowalls in an interleaved network, as shown in Fig. 8i–l. The size of the MoS\(_2\) nanosheets increased to 50–200 nm. It has been reported that nucleation is mainly controlled by the solution concentration [30,31], and a high concentration would contribute to an increase in nucleation sites and the product density [31,43]. Furthermore, a lower nucleation density promotes growth at neighboring sites, which results in a slant morphology, whereas a higher nucleation density contributes to the vertical growth on the substrate because of the limited space [30,31,43]. Therefore, as the concentration increased from 1.5 to 2 mg mL\(^{-1}\), more erect MoS\(_2\) nanosheets formed and led to the formation of the interleaved MoS\(_2\) nanowalls with a high density of active edges. However, when the concentration was increased to 3 mg mL\(^{-1}\), even though the interleaved MoS\(_2\) nanowall networks on the SNCF formed, several aggregates of the MoS\(_2\) nanoflowers grew on the nanowalls. They resemble rosemary buds with a number of edges buried inside in a thermodynamically stable configuration, according to the FE-SEM and TEM results (Fig. 8m–p). The poorly exposed active edges may explain the reduced HER performance.

For the synthesis of the WS\(_2\)/SNCF hybrid, a series of morphological evolutions caused by the changing of the concentration of the W precursor are shown in Fig. 9. The low concentration of 1.5 mg mL\(^{-1}\) results in sparse, slanted and well-dispersed WS\(_2\) nanosheets, as shown in Fig. 9a,b. The small and slanted WS\(_2\) nanosheets exhibit the crescent-like morphology, and there is no aggregation of the WS\(_2\) nanoflowers. As shown in Fig. 9c,d, a higher concentration (2.5 mg mL\(^{-1}\)) changes the former individual crescent-like WS\(_2\) nanosheets into the interleaved WS\(_2\) nanowall network. Compared with 2.5 mg mL\(^{-1}\) (Fig. 10c), 3.5 mg mL\(^{-1}\) achieves vertically aligned WS\(_2\) nanowalls with a higher density (Fig. 9e,f). The whole SNCF is covered with the WS\(_2\) nanowall network after using a concentration of 3.5 mg mL\(^{-1}\).

Fig. 9 – FE-SEM and TEM images of the WS\(_2\)/SNCF hybrid using different concentrations of the W precursor: (a, b) 1.5 mg mL\(^{-1}\), (c, d) 2.5 mg mL\(^{-1}\) and (e, f) 3.5 mg mL\(^{-1}\).
The corresponding electrocatalytic performances of MoS$_2$/SNCF and WS$_2$/SNCF as a function of morphology are shown in Fig. 10. The electrochemical performances of MoS$_2$/SNCF and WS$_2$/SNCF with various morphologies for the HER were demonstrated, as shown in Fig. 10. The MoS$_2$/SNCF catalysts prepared using concentrations of 1 mg mL$^{-1}$, 1.5 mg mL$^{-1}$, 2 mg mL$^{-1}$ and 3 mg mL$^{-1}$ are labeled as MoS$_2$/SNCF-1, MoS$_2$/SNCF-2, MoS$_2$/SNCF-3 and MoS$_2$/SNCF-4, respectively. Similarly, the WS$_2$/SNCF catalysts prepared using concentrations of 1.5 mg mL$^{-1}$, 2.5 mg mL$^{-1}$ and 3.5 mg mL$^{-1}$ are labeled as WS$_2$/SNCF-1, WS$_2$/SNCF-2 and WS$_2$/SNCF-3, respectively. As shown in Fig. 10a, MoS$_2$/SNCF-1 with individual small MoS$_2$ nanosheets shows a weak HER activity with an onset potential of 200 mV. An increased Mo precursor concentration (MoS$_2$/SNCF-3) forms the MoS$_2$ nanowall network and displays the best HER activity with an onset potential of 40 mV. However, compared with MoS$_2$/SNCF-3, MoS$_2$/SNCF-4 contains a larger amount of MoS$_2$ nanoflowers and exhibits a relatively higher onset potential of 100 mV. The onset potentials and other criteria of the MoS$_2$/SNCF catalysts for the HER are shown in Table 2. The results indicate that the MoS$_2$/SNCF with the nanowall network exhibits the highest HER activity with the lowest onset potential and highest current density. The corresponding Tafel plots for the MoS$_2$/SNCF electrocatalysts present slopes of 80, 76, 60 and 99 mV dec$^{-1}$, as shown in Fig. 10b. The results indicate that the MoS$_2$/SNCF with the nanowall network possesses the lowest Tafel slope of 60 mV dec$^{-1}$, which proves the superior HER efficiency. Both the polarization curves and Tafel plots show the excellent HER efficiency of MoS$_2$/SNCF-3, which is associated with its morphology and electronic properties.

As for the electrocatalytic performance of the WS$_2$/SNCF series, the WS$_2$/SNCF with an extensive nanowall network exhibits a high HER activity with an onset potential of 96 mV (Fig. 10c; Table 2). The onset potentials of WS$_2$/SNCF-2 and WS$_2$/SNCF-1 are 134 and 201 mV, respectively, as shown in

Table 2 – Comparison of HER parameters of MoS$_2$/SNCF and WS$_2$/SNCF catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Onset η (mV)</th>
<th>Tafel (mv dec$^{-1}$)</th>
<th>j at $\eta = 300$ mV vs. RHE (mA cm$^{-2}$)</th>
<th>η at $j = 10$ mA cm$^{-2}$ (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoS$_2$/SNCF-1</td>
<td>200</td>
<td>80</td>
<td>7.9</td>
<td>307</td>
</tr>
<tr>
<td>MoS$_2$/SNCF-2</td>
<td>161</td>
<td>76</td>
<td>19.2</td>
<td>261</td>
</tr>
<tr>
<td>MoS$_2$/SNCF-3</td>
<td>40</td>
<td>60</td>
<td>60.3</td>
<td>102</td>
</tr>
<tr>
<td>MoS$_2$/SNCF-4</td>
<td>100</td>
<td>99</td>
<td>32.3</td>
<td>214</td>
</tr>
<tr>
<td>WS$_2$/SNCF-1</td>
<td>201</td>
<td>100</td>
<td>17.1</td>
<td>266</td>
</tr>
<tr>
<td>WS$_2$/SNCF-2</td>
<td>134</td>
<td>96</td>
<td>36.4</td>
<td>211</td>
</tr>
<tr>
<td>WS$_2$/SNCF-3</td>
<td>96</td>
<td>66</td>
<td>85.2</td>
<td>157</td>
</tr>
</tbody>
</table>

Fig. 10c and Table 2. The corresponding Tafel plots for the WS2/SNCF electrocatalysts present slopes of 100, 96 and 66 mV dec⁻¹, which are superior to those of most of the WS2-based electrocatalysts that have been previously reported. The MoS2/SNCF and WS2/SNCF hybrids both exhibit morphology-dependent HER activities, and the MoS2 and WS2 nanowall networks with large amounts of exposed active sites exhibit the best HER activities with the lowest onset potentials, lowest Tafel slopes and highest current densities [5,8,15–17,30,31,42–44].

Because of the improved effective electronic and chemical coupling between MoS2 or WS2 and the SNCF, electrons can be delivered directly and efficiently from the highly conductive SNCF to the vertically aligned MoS2 nanosheets. More importantly, aligning the MoS2 nanosheets perpendicularly to the conductive substrates optimizes the conductivity of the conductive substrates. The two-dimensional MoS2 and WS2 can both possess the nanowall morphology on the SNCF by adjusting the concentration of precursors. It is effective to design and construct the MoS2 and WS2 nanowalls with maximum active-edge exposure, leading to a high electrocatalytic activity for the HER. Based on above results, a potential growth mechanism of this outstanding MoS2/SNCF and WS2/SNCF is presented as follows.

The silk derived N-doped carbon fibers possess abundant oxygen groups, which can serve as anchors for the growth of MoS2 or WS2. At the initial stage of the reaction, the Mo and W precursors were adsorbed on the SNCF and then decomposed to form the MoS2 or WS2 nanosheets, which tended to nucleate and anchor on the SNCF. Because of the substrate effects, the growth of MoS2 or WS2 occurred in only two directions to form nanosheets. The monolayered or bilayered MoS2 or WS2 nanosheets were attached to each other by van der Waals interactions and finally self-assembled to form MoS2 or WS2 nanowall network. The appropriate and relatively high concentration of the precursor led to dense and vertically aligned nanowalls in a limited space with a large number of exposed active sites. Overall, by controlling the concentration, which can influence the nucleation and growth of MoS2 nanosheets, the vertical growth of MoS2 or WS2 with a maximum exposure of active edges on the SNCF was successfully synthesized with excellent HER activities.

Conclusion

In conclusion, a facile and effective approach for the design and construction of the MoS2 and WS2 nanowalls with maximum active-edge exposure on silk derived N-doped carbon fibers was demonstrated. The morphological evolutions of the MoS2 and WS2 nanocrystals on the SNCF, from crescent-like nanosheets to an interleaved nanowall network, can be obtained by adjusting the concentrations of the Mo and W precursors. The HER performances of the various catalysts were measured to determine the influence of the number of active edges, and a comprehensive investigation of the growth mechanisms was pursued. In the present investigation, the dense and vertically aligned MoS2 and WS2 nanowalls on the SNCF possessed the highest concentration of exposed active edges and exhibited outstanding HER performances. These robust MoS2/SNCF and WS2/SNCF electrocatalysts exhibit preeminent HER activity with onset potentials of –40 and –96 mV and Tafel slopes of 60 and 66 mV dec⁻¹, respectively. The overpotentials (η) at j = –10 mA cm⁻² (mV) for MoS2/SNCF and WS2/SNCF are –102 and –157 mV, respectively. In addition, MoS2/SNCF and WS2/SNCF are both able to sustain continuous HER operation for 10 h with only a slight degradation in current densities. This reveals the stability of the catalysts under HER working conditions and the strong coupling of MoS2 and WS2 nanowalls with the SNCF, implying excellent durability and a prospect for practical applications.

Acknowledgement

This study was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 21203137, 51573166), Natural Science Foundation of Zhejiang Province (Grant No. LQ16E020005).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.ijhydene.2016.07.257.

References

