欢迎访问 李仁宏 课题组 >> 团队成员 >> 教师 >> 正文

教师

李仁宏 特聘教授 博导

 

李仁宏,男,中共党员,理学博士,特聘教授,博士生导师,浙江省高校领军人才-高层次拔尖人才,浙江理工大学青年拔尖人才-杰出青年教师,浙江理工大学临平研究院院长。2006年毕业于浙江理工大学材料科学与工程系,获工学学士学位;2014年毕业于浙江大学化学系,获化学博士学位,并获浙江省优秀博士毕业生称号。2014年起任职于浙江理工大学材料科学与工程学院。2018-2019年在浙江省经济和信息化厅挂职锻炼。曾在日本Kyoto Institute of Technology和新加坡南洋理工大学(剑桥大学研究中心)作访问学者。

李老师课题组始终坚持面向国家重大战略需求,瞄准清洁能源材料产业发展,围绕氢能源规模化应用开展研究,在催化制氢基础理论实现突破,在解耦催化分解水制氢高端装备实现产业化。主持3项国家自然科学基金项目、1项百万级的专利转化项目和1项千万级的创业平台建设项目,曾获中国纺织工业联会教学成果一等奖,浙江省生态环境技术进步奖。在《JACS》、《Advanced Materials》等权威期刊上发表学术论文50余篇,并获发明专利授权十余项,成果被国内外同行广泛跟踪和研究。

李老师坚持立德树人根本任务,在扎实开展基础研究的同时,注重科研成果的应用转化,搭建校企联合研究中心和研究生实践实习基地,为企业提供技术和人才支持以解决生产、研发难题,同时也为学生提供创新创业平台。自任教以来一直活跃在本科生主干课程和国外留学研究生课程讲授一线,获评浙江省一流本科课程;多次指导学生参加“挑战杯”、“互联网+”大赛并获奖;担任博士班班主任,指导研究生和本科生共计50余人,培养了一批优秀的青年学子。


主要研究方向:

  • 纳米能源催化材料;

  • 光/电催化分解水制氢;

  • 氢燃料电池;

  • 辐射制冷材料。


主讲课程:

  • 《热工过程及设备》

  • 《新型无机材料》

  • 《薄膜材料技术》

  • 《Material Structure and Performance》(留学生全英文课程)


研究生培养:

2016年招生以来共招研究生40名,其中13人毕业,3人转为硕博连读。


主要荣誉与奖励:

  • 浙江理工大学“青年拔尖人才培养计划”(2023)

  • 浙江省高校领军人才培养计划-高层次拔尖人才(2022 )

  • 浙江省高校高水平创新团队(2018)

  • 中美华人纳米会议墙报金奖(2015)

  • 浙江省优秀博士毕业生(2014)

  • 浙江大学研究生国家奖学金(2013)


主持科研项目:

  1. 2022年浙江省先进碳材料创新服务综合体共建项目(1500万)

  2. 2022年专利转化项目(100万)

  3. 2021年国家自然科学基金面上项目:基于金属-载体强相互作用构筑抗烧结混合维度异质结及其催化增效机制

  4. 2018年国家自然科学基金面上项目:化学场驱动催化重整含氧生物质小分子制氢及串联协同降解高盐废水

  5. 2016年国家科技部重大项目:高性能聚酯与聚酰胺66工业丝制备技术(参与)

  6. 2015年国家自然科学基金青年项目:自由基参与纳米铂基金属表面氰化重构及其抗“甲醇渗透”电催化性能

  7. 2015年浙江省自然科学基金面上项目:纳米金属表面光化学氰基可控改性及电催化特性研究

近几年代表性文章:

  1. Highly efficient and robust nickel-iron bifunctional catalyst coupling selective methanol oxidation and freshwater/seawater hydrogen evolution via CO-free pathway. Chemical Engineering Journal, 2023, 452: 139404.(IF=16.74,化工领域顶刊)

  2. Synergistic effect of PtNi alloy loading on TiB2 to construct SMSI catalysing formic acid dehydrogenation. Sustainable Energy & Fuels, 2022, 6(24): 5531-5538.(IF=6.813)

  3. Direct Z-Scheme In2O3/In2S3 Heterojunction for Oxygen-Mediated Photocatalytic Hydrogen Production. Energy & Fuels, 2022, 36(24): 15100-15111.(IF=4.654)

  4. Boosting Electrocatalytic Hydrogen Evolution with Anodic Oxidative Upgrading of Formaldehyde over Trimetallic Carbides. ACS Sustainable Chemistry & Engineering, 2022, 10(21): 7108-7116.(IF=9.224)

  5. Carbon-catalyzed oxygen-mediated dehydrogenation of formaldehyde in alkaline solution for efficient hydrogen production. International Journal of Hydrogen Energy, 2022, 47(65): 27877-27886.(IF=7.139)

  6. A strong Jahn–Teller distortion in Mn3O4–MnO heterointerfaces for enhanced silver catalyzed formaldehyde reforming into hydrogen. Sustainable Energy & Fuels, 2022, 6(12): 3068-3077.(IF=6.813)

  7. Strong Metal–Support Interaction for 2D Materials: Application in Noble Metal/TiB2 Heterointerfaces and their Enhanced Catalytic Performance for Formic Acid Dehydrogenation. Advanced Materials, 2021, 33(32): 2101536.(IF=32.086,材料领域顶刊)

  8. Biomimetic polydopamine catalyst with redox activity for oxygen-promoted H2 production via aqueous formaldehyde reforming. Sustainable Energy & Fuels, 2021, 5(18): 4575-4579.(IF=6.813)

  9. Elucidating the Strain–Vacancy–Activity Relationship on Structurally Deformed Co@CoO Nanosheets for Aqueous Phase Reforming of Formaldehyde. Small, 2021, 17(51): 2102970.(IF=15.153)

  10. High-performance direct carbon dioxide-methane solid oxide fuel cell with a structure-engineered double-layer anode. Journal of Power Sources, 2021, 484: 229199.(IF=9.794)

  11. Perovskite materials for highly efficient catalytic CH4 fuel reforming in solid oxide fuel cell. International Journal of Hydrogen Energy, 2021, 46(48): 24441-24460.(IF=7.139)

  12. The interplay of Ag and ferromagnetic MgFe2O4 for optimized oxygen-promoted hydrogen evolution via formaldehyde reformin. Catalysis Science & Technology, 2021, 11(19): 6462-6469.(IF=6.177)

  13. Ce-enhanced LaMnO 3 perovskite catalyst with exsolved Ni particles for H2 production from CH4 dry reforming. Sustainable Energy & Fuels, 2021, 5(21): 5481-5489.(IF=6.813)

  14. Directional oxygen activation by oxygen-vacancy rich WO2 nanorods for superb hydrogen evolution via formaldehyde reforming. J. Mater. Chem. A, 2019, 7, 14592−14601. (IF=14.511)

  15. Interface engineering of palladium and zinc oxide nanorods with strong metal-support interactions for enhanced hydrogen production from base-free formaldehyde solution. J. Mater. Chem. A,2019, 7, 8855-8864. (IF=14.511, 封面论文)

  16. Tandem catalysis induced by hollow PdO: highly efficient H2 generation coupled with organic dye degradation via sodium formate reforming. Catalysis Science & Technology, 2018, 8, 6217-6227. (IF: 6.177)

  17. Oxygen-Controlled Hydrogen Evolution Reaction: Molecular Oxygen Promotes Hydrogen Production from Formaldehyde Solution Using Ag/MgO Nanocatalyst. ACS Catalysis, 2017, 7(2), 1478-1484. (IF: 13.700)

  18. The interplay of sulfur doping and surface hydroxyl in band gap engineering Mesoporous sulfur-doped TiO2 coupled with magnetite as a recyclable efficient visible light active photocatalyst for water. Applied Catalysis B: Environmental, 2017, 218, 20-31. (IF: 24.319,环境领域顶刊)

  19. Radical-Involved Photosynthesis of AuCN Oligomers from Au Nanoparticles and Acetonitrile. Journal of the American Chemical Society, 2012, 134(44), 18286-18294. (IF: 16.383,化学领域顶刊)

  20. Au/BiOCl heterojunction within mesoporous silica shell as stable plasmonic photocatalyst for efficient organic pollutants decomposition under visible light. Journal of Hazardous Materials, 2016, 303, 1-9. (IF: 14.224)

  21. All-solid-state magnesium oxide supported Group VIII and IB metal catalysts for selective catalytic reforming of aqueous aldehydes into hydrogen. International Journal of Hydrogen Energy, 2017, 42, 10834-10843. (IF: 7.139)

  22. The interplay of Au nanoparticles and ZnO nanorods for oxygen-promoted, base-free, complete formaldehyde reforming into H2 and CO2, Catalysis Communications, 2018, 117, 5-8. (IF: 3.510)

  23. Novel Route to Erucamide: Highly Selective Synthesis from Acetonitrile at Room Temperature via a Photo-Fenton Process. ACS Sustainable Chemistry & Engineering, 2018, 6 (9), 11380-11385. (IF: 9.224)

  24. Gold nanoparticles confined in ordered mesopores: Size effect and enhanced stability during gas-phase selective oxidation of cyclohexanol. Catalysis Today, 2017, 298, 269-275. (IF: 6.562)

  25. Tandem catalysis induced by hollow PdO: highly efficient H2 generation coupled with organic dye degradation via sodium formate reforming. Catalysis Science & Technology, 2018, 8, 6217-6227. (IF: 6.177)

  26. The interparticle coupling effect of gold nanoparticles in confined ordered mesopores enhances high temperature catalytic oxidation. RSC Advances, 2016, 6, 88486-88489. (IF: 4.036)

  27. Single component gold on protonated titanate nanotubes for surface-charge-mediated, additive-free dehydrogenation of formic acid into hydrogen. RSC Advances, 2016, 6, 100103-100107. (IF: 4.036)

  28. A new application of the traditional Fenton process to gold cyanide synthesis using acetonitrile as cyanide source. RSC Advances, 2016, 6, 16448-16451. (IF: 4.036)

  29. Dioxygen activation at room temperature during controllable and highly efficient acetaldehyde-to-acetic acid oxidation using a simple iron(III)-acetonitrile complex. Catalysis Today, 2014, 233, 140-146. (IF: 6.562)

  30. Rationally tuning the active sites of copper-based catalysts towards formaldehyde reforming into hydrogen. Sustainable Energy & Fuels.2021,5, 6470-6477. (IF 6.813)

  31. Adsorption driven formate reforming into hydride and tandem hydrogenation of nitrophenol to amine over PdOx catalysts. Catalysis Science & Technology.2020,10, 8332-8338. (IF 6.177)

  32. Oxygen-mediated water splitting on metal-free heterogeneous photocatalyst under visible light. Applied Catalysis B: Environmental.2020, 279, 119378. (IF 24.319)

  33. In situ generated electron-deficient metallic copper as the catalytically active site for enhanced hydrogen production from alkaline formaldehyde solution. Catalysis Science & Technology.2019,9, 5292-5300. (IF 6.177)

  34. Ultrasmall Silver Clusters Stabilized on MgO for Robust Oxygen-Promoted Hydrogen Production from Formaldehyde Reforming. ACS Applied Materials & Interfaces.2019,11, 33946-33954. (IF 10.383)

  35. Ligand-mediated bifunctional catalysis for enhanced oxygen reduction and methanol oxidation tolerance in fuel cells. Journal of Materials Chemistry A.2018,6, 18884-18890. (IF 14.511)

  36. Ligand-regulated ORR activity of Au nanoparticles in alkaline medium: the importance of surface coverage of ligands. Catalysis Science & Technology.2018,8, 746-754. (IF 6.177)

  37. Boosting Hydrogen Evolution Activities by Strong Interfacial Electronic Interaction in ZnO@Bi(NO3)(3) Core-Shell Structures. The Journal of Physical Chemistry C. 2017,121, 4343-4351. (IF 4.177)

  38. Gold nanoparticle stabilization within tailored cubic mesoporous silica: Optimizing alcohol oxidation activity. Chinese Journal of Catalysis.2017,38, 545-553. (IF 12.92)

  39. Cyanide Radical Chemisorbed Pt Electrocatalyst for Enhanced Methanol-Tolerant Oxygen Reduction Reactions. The Journal of Physical Chemistry C.2016,120, 11572-11580. (IF 4.177)

  40. The coupling of hemin with persistent free radicals induces a nonradical mechanism for oxidation of pollutants. Chemical Communications. 2016,52, 9566-9569. (IF 6.065)

  41. The interparticle coupling effect of gold nanoparticles in confined ordered mesopores enhances high temperature catalytic oxidation. RSC Advances. 2016,6, 88486-88489. (IF 4.036)

  42. High Density Gold Nanoparticles Within Three-Dimensionally Mesoporous SBA-15: Adsorption Behavior and Optical Properties. Journal of Nanoscience and Nanotechnology.2015,15, 7060-7067.(IF 1.134)

  43. Platinum nanoparticles supported on Ca(Mg)-zeolites for efficient room-temperature alcohol oxidation under aqueous conditions. Chemical Communications.2014,50, 9679-9682. (IF 6.065)

  44. Sub-10 nm Au-Pt-Pd alloy trimetallic nanoparticles with a high oxidation-resistant property as efficient and durable VOC oxidation catalysts. Chemical Communications.2014,50, 11713-11716. (IF 6.065)

  45. Solid phase metallurgy strategy to sub-5 nm Au-Pd and Ni-Pd bimetallic nanoparticles with controlled redox properties. Chemical Communications. 2014,50, 213-215. (IF 6.065)

  46. Unusual Loading-Dependent Sintering-Resistant Properties of Gold Nanoparticles Supported within Extra-large Mesopores. Chemistry of Materials. 2013,25, 1556-1563.(IF 10.508)

  47. Ordered, extra-large mesopores with highly loaded gold nanoparticles: a new sintering- and coking-resistant catalyst system. Chemical Communications, 2013,49, 7274-7276. (IF 6.065)

  48. TiO2 nanoparticles with increased surface hydroxyl groups and their improved photocatalytic activity. Catalysis Communications, 2012,19, 96-99. (IF 3.51)

  49. Visible-Light Induced High-Yielding Benzyl Alcohol-to-Benzaldehyde Transformation over Mesoporous Crystalline TiO2: A Self-Adjustable Photo-oxidation System with Controllable Hole-Generation. The Journal of Physical Chemistry C,2011,115, 23408-23416. (IF 4.177)

  50. Platinum-nanoparticle-loaded bismuth oxide: an efficient plasmonic photocatalyst active under visible light. Green Chemistry, 2010,12, 212-215. (IF 11.034)

  51. Magnetoswitchable controlled photocatalytic system using ferromagnetic Fe-0-doped titania nanorods photocatalysts with enhanced photoactivity. Separation and Purification Technology, 2009, 66, 171-176. (IF 9.136)

授权和申请专利:

  1. 一种贵金属提取液、制备方法及其应用(CN108179278A2018.06.19)

  2. 一种制氢催化体系、包含所述催化体系的制氢体系及其用途(CN107128875A2017.09.05)

  3. 一种无光除醛催化剂、包含所述催化剂的除醛体系及其用途(CN107185535A2017.09.22)

  4. 一种制备金属氰化物纳米颗粒的新方法

  5. 一种由Fenton试剂合成贵金属氰化物的方法

  6. Fenton reagent improved cyandation and usage thereof(美国发明专利)

  7. 一种低能耗化学场驱动的有机污染物降解催化剂及其应用

  8. 一种高温抗烧结催化剂的应用

  9. 磁性铁担载二氧化钛纳米棒光催化剂的制备方法

  10. 一种具有辐射制冷功能的纺织品及其制备方法

  11. 一种高效、低成本分布式电解甲醇制绿氢装置

  12. 非晶态多金属硼化物催化剂及其应用

  13. 一种丁二腈或己二腈的合成方法

  14. 一种光催化制氢体系及其应用

  15. 一种室温铁磁性半导体及其制备方法、用途

  16. 一种含有日间辐射制冷多孔涂层的纺织品及其制备方法、应用

  17. 一种镍锰气凝胶催化剂及其在电催化碱性生物质水溶液制氢中的应用

  18. 一种基于电解制氢技术的耦合氢燃料电池发电系统及方法

  19. 一种提高纤维增强热塑性复合材料界面结合强度的方法

 

Copyright © 2008-2016 材料科学与工程学院 All Rights Reserved

地址:杭州下沙高教园区2号大街928号