欢迎访问 李仁宏 课题组 >> 团队成员 >> 教师 >> 正文

教师

李仁宏 博士

 

  李仁宏,男,中共党员,理学博士,硕士生导师,浙江理工大学材料工程系党支部书记兼副系主任,校青年拔尖人才计划资助人员,校新型无机纤维材料研究所副所长,浙江省高校高水平创新团队-工程纤维及聚集体创新团队主要成员,中国化学会会员。2006年毕业于浙江理工大学材料科学与工程系,获工学学士学位;2014年毕业于浙江大学化学系,获化学博士学位,并获浙江省优秀博士毕业生称号。2014年起任职于浙江理工大学材料与纺织学院、丝绸学院。2018-2019年在浙江省经济和信息化厅挂职锻炼。

    李老师已在《Journal of the American Chemical Society》、《ACS catalysis》、《Applied Catalysis B: Environmental》等杂志发表30多篇高档次SCI论文;主持国家自然科学基金面上项目和青年项目各1项,省自然科学基金面上项目1项,参与国家重点研发计划1项,近三年科研总经费逾百万元;指导硕士研究生5名,(协助)指导博士研究生2名,多位研究生获得校研究生培育基金和研究生创新项目,并发表多篇高档次SCI论文;指导本科生先后荣获2017年和2018年国家级大学生创新创业训练计划项目2项,2018年浙江省大学生科技创新活动计划暨新苗人才计划2项,2018年“创青春”浙江省第十一届“挑战杯”大学生创业大赛省赛三等奖1项。课题小组科研氛围浓厚,组员互帮互助,齐心合力营造并逐渐形成“乐观做人,踏实做事”的课题小组文化和传统。

主要研究方向:

催化生物质重整制氢;

污水处理和空气净化;

高性能碳材料。

主讲课程:

  (1)《热工过程及设备》

  (2)《新型无机材料》

  (3)《薄膜材料技术》

  (4)Material Structure and Performance》(留学生)

研究生培养:

2016年招生以来共招研究生6名,其中1人转为硕博连读。

主要荣誉与奖励:

浙江理工大学“青年拔尖人才培养计划”(2018

中美华人纳米会议墙报金奖(2015

浙江省高校高水平创新团队(2018

浙江省优秀博士毕业生(2014

浙江大学研究生国家奖学金(2013

科研项目:

2018年国家自然科学基金面上项目:化学场驱动催化重整含氧生物质小分子制氢及串联协同降解高盐废水

2016年国家科技部重大项目:高性能聚酯与聚酰胺66工业丝制备技术(参与)

2015年国家自然科学基金青年项目:自由基参与纳米铂基金属表面氰化重构及其抗“甲醇渗透”电催化性能

2015年浙江省自然科学基金面上项目:纳米金属表面光化学氰基可控改性及电催化特性研究

近几年代表性文章:

(1) Directional oxygen activation by oxygen-vacancy rich WO2 nanorods for superb hydrogen evolution via formaldehyde reforming. J. Mater. Chem. A, 2019, 7, 14592−14601. (IF=10.7)

(2) Interface engineering of palladium and zinc oxide nanorods with strong metal-support interactions for enhanced hydrogen production from base-free formaldehyde solution. J. Mater. Chem. A,2019, 7, 8855-8864. (IF=10.7, 封面论文)

(3) Tandem catalysis induced by hollow PdO: highly efficient H2 generation coupled with organic dye degradation via sodium formate reforming. Catalysis Science & Technology, 2018, 8, 6217-6227. (IF: 5.365)

(4) Oxygen-Controlled Hydrogen Evolution Reaction: Molecular Oxygen Promotes Hydrogen Production from Formaldehyde Solution Using Ag/MgO Nanocatalyst. ACS Catalysis, 2017, 7(2), 1478-1484. (IF: 11.346)

(5) The interplay of sulfur doping and surface hydroxyl in band gap engineering Mesoporous sulfur-doped TiO2 coupled with magnetite as a recyclable efficient visible light active photocatalyst for water. Applied Catalysis B: Environmental, 2017, 218, 20-31. (IF: 11.698)

(6) Radical-Involved Photosynthesis of AuCN Oligomers from Au Nanoparticles and Acetonitrile. Journal of the American Chemical Society, 2012, 134(44), 18286-18294. (IF: 14.357)

(7) Au/BiOCl heterojunction within mesoporous silica shell as stable plasmonic photocatalyst for efficient organic pollutants decomposition under visible light. Journal of Hazardous Materials, 2016, 303, 1-9. (IF: 6.434)

(8) All-solid-state magnesium oxide supported Group VIII and IB metal catalysts for selective catalytic reforming of aqueous aldehydes into hydrogen. International Journal of Hydrogen Energy, 2017, 42, 10834-10843. (IF: 4.229)

(9) The interplay of Au nanoparticles and ZnO nanorods for oxygen-promoted, base-free, complete formaldehyde reforming into H2 and CO2, Catalysis Communications, 2018, 117, 5-8. (IF: 3.463)

(10) Novel Route to Erucamide: Highly Selective Synthesis from Acetonitrile at Room Temperature via a Photo-Fenton Process. ACS Sustainable Chemistry & Engineering, 2018, 6 (9), 11380-11385. (IF: 6.14)

(11) Gold nanoparticles confined in ordered mesopores: Size effect and enhanced stability during gas-phase selective oxidation of cyclohexanol. Catalysis Today, 2017, 298, 269-275. (IF: 4.667)

(12) Tandem catalysis induced by hollow PdO: highly efficient H2 generation coupled with organic dye degradation via sodium formate reforming. Catalysis Science & Technology, 2018, 8, 6217-6227. (IF: 5.365)

(13) The interparticle coupling effect of gold nanoparticles in confined ordered mesopores enhances high temperature catalytic oxidation. RSC Advances, 2016, 6, 88486-88489. (IF: 2.936)

(14) Single component gold on protonated titanate nanotubes for surface-charge-mediated, additive-free dehydrogenation of formic acid into hydrogen. RSC Advances, 2016, 6, 100103-100107. (IF: 2.936)

(15) A new application of the traditional Fenton process to gold cyanide synthesis using acetonitrile as cyanide source. RSC Advances, 2016, 6, 16448-16451. (IF: 2.936)

(16) Dioxygen activation at room temperature during controllable and highly efficient acetaldehyde-to-acetic acid oxidation using a simple iron(III)-acetonitrile complex. Catalysis Today, 2014, 233, 140-146. (IF: 4.667)

授权专利:

  1. 一种贵金属提取液、制备方法及其应用(CN108179278A2018.06.19

  2. 一种制氢催化体系、包含所述催化体系的制氢体系及其用途(CN107128875A2017.09.05

  3. 一种无光除醛催化剂、包含所述催化剂的除醛体系及其用途(CN107185535A2017.09.22

  4. 一种制备金属氰化物纳米颗粒的新方法

  5. 一种由Fenton试剂合成贵金属氰化物的方法

  6. Fenton reagent improved cyandation and usage thereof(美国发明专利)

 

Copyright © 2008-2016 材料科学与工程学院 All Rights Reserved

地址:杭州下沙高教园区2号大街928号