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Facile doping method is developed to fabricate the ZIF-67@CAs. The strategy can effectively
disperse MOFs uniformly. The ZIF-67@CA s combines the degradation performance of MOFs and
the shape ability of aerogels, which can effectively improve the degradation performance. The
degradation mechanism shows that ZIF-67@CAs can effectively purify organic pollutantsin water.
The strategy can be applied to various MOF catalysts in wastewater treatment and thereby

expanding their application in awider range of fields.
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Abstract: Metal-organic frameworks (MOFs) can efficiently dede stubborn
organic pollutants via advanced oxidation procé$swever, it is essential to find
ways to shape MOFs if its promise of practical agion is to be realized. Herein,
we develop a Zeolitic Imidazolate Framework-67 (BIF@cellulose aerogel (denoted
as ZIF-67@CA) by a facile doping method. The stiatenhances actual macroscopic
shape ability and external hierarchical porositell@ose can provide mechanical
flexibility to shape MOFs and promote recycle e#ficy after water treatment. The
novel doping method increases the loading and digpkty of ZIF-67, which further
increases the potential for the degradation ofmgpollutants. ZIF-67@CA can take
advantage of the accessible surface area and oa¢tdytic sites of ZIF-67 to activate
peroxymonosulfate (PMS) efficiently and promote disgradation of p-nitrophenol
(PNP) and tetracycline hydrochloride (TC). The @elgtion rate of organic pollutants
is up to 80% within only 20 min. Furthermore, ZIF@CA exhibits excellent pH
stability and recyclability so that it can be redig® harsh environments. Therefore, the
low-cost and environmental-friendly production neathcan effectively recycle
high-performance MOFs and expand its applicatiares wider range of fields.
Keywords. metal-organic frameworks; doping method; cellulageogel; advanced
oxidation process; organic pollutant
1. Introduction

Recently, water pollution is considered as onehef rnost serious environmental

problems, which has caused a huge impact on huifieaamid health. Toxic substances
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and organic pollutants in wastewater such as jppfieenol (PNP) and tetracycline
hydrochloride (TC) not only destroy ecosystemsdisib pose a great threat to aquatic
life and even human beings [1]. Thus, the efficiantl cost-effective biological
approached are urgently developed to remove palsitarom toxicity and
recalcitrance. Various technologies have been m@gdo remove pollutants from
water, such as adsorption [2], oxidation [3], pleatalysis degradation [4],
electrodegradation [5] and advanced oxidation m®ee (AOPs) [6]. Given high
efficiency, wide application range and chemicalbsity, AOPs have caused
widespread concern by using hydroxyl radicals («@htJ sulfate radical anions ($0Q
as powerful oxidizing species [7]. Specially, trengrated S¢ from the activation of
peroxymonosulfate (PMS) exhibit efficient degradatrate of organic pollutants due
to its high redox potential (235.1V), high selectivity and wide operating pH rangg [8
Currently, the solid catalysts including transitimetals (e.g. Co, Fe, Mn and Cu) are
used as activators of PMS [9]. Although these gatal show good degradation
properties, the secondary pollution of the toxio gissolution and the difficulty in
separation and recovery limit their practical apggiions [10].Thus, lots of efforts have
been done to overcome those above mentioned defRetently, metal-organic
frameworks (MOFs) have attracted great attentionpesmising heterogeneous
catalysts due to their high specific surface ard¢asable porous structure, and
modifiability [11]. Meanwhile, transition metal ke MOFs exhibit ultrahigh activity
for activating PMS, which can be beneficial to patenthe degradation reaction [12].

For example, Zeolitic Imidazolate Framework-67 (BF) coordinated by cobalt ion

3
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and dimethylimidazole, which can obtain throughléamethod and provide cobalt ion
to activate PMS. However, MOF patrticles are notyetmsbe separated from the
suspension, which greatly affect their recovenyd reusability, and hinder their
practical applications. Thus, it is urgent to depelenvironmental friendly and
recyclable supporting substrates to collect MOFRiglas.

Cellulose aerogels (CAs) have been considered asobnthe most potential
supporting materials for water treatment in viewtledir low-cost, biodegradability,
agueous stability and recyclability [13]. As suppag substrates, cellulose aerogels
have the following characteristics: (a) the porstrsicture effectively promotes the
adsorption of wastewater; (b) the stable physical ehemical properties make sure
that they can work in complex environments; (c) timod mechanical stability
endows CAs with excellent recyclability to achieve separation and recovery of
catalysts [14] MOFs@cellulose composites have been developedvéstewater
treatment in recent years [15]. However, loading F8Con cellulose aerogels for
degradation of organic pollutants is quite chalieg@gnd rare studies were reported.

In our present work, a facile doping method is dgyed to fabricate the
ZIF-67@CA with high loading (44.7 wt%). The compgesimaterials possess
excellent catalytic degradation ability of MOFsdarombines the plasticity and the
external hierarchical porosity of cellulose aerog@lF-67@CA showed excellent
degradation performance (up to 80% within 20 mam)ifoth PNP and TC. In addition,
ZIF-67@CA presented outstanding pH tolerance araficzy stability, which is of

great significance for practical applications. Onrethod provides a low-cost,

4
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sustainable and scalable platform for the fullizaion and recycling of MOFs
materials.
2. Resultsand Discussions

In view of the harmfulness of organic pollutantsdanhe difficulty of
self-degradability, it is necessary to develop matalytic materials, which are highly
efficient, degradable and recyclable [16].

The ZIF-67@CA was prepared by a novel and simplandgpmethod (the details
were presented in Supporting Information). This hrodtis extremely beneficial for
increasing the load of ZIF-67 and uniform dispansif ZIF-67. Meanwhile, the
appearance morphology of ZIF-67@CA is more cordbdd. The obtained
ZIF-67@CA is showed in Figure 1, the bright purplIF-67@CA is consistent with
that of ZIF-67 and the ZIF-67@CA maintain a well-defined shapthwhe excellent

properties of aerogels.

AOPs @ Activate PMS

OH \N/
OH
OH
NH, “‘O
OH
NO, o (o) OH O OH
TC

PNP

Figure 1. Photograph of ZIF-67@CA and the scheme of ZIFFANP and TC structures.
2.1 Characterization of ZIF-67@CA
The powder X-ray diffraction (XRD) was used to derstvate the crystal structure of

ZIF-67 in the aerogels. As shown in Figure 2a, dblulose aerogels show a broad
5
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diffraction peaks around 20°, which is a typicajlstalline structure for the cellulose.
The XRD patterns of ZIF-67@CA is similar to thatZiF-67 powder, indicating the
pure phase of ZIF-67 is successfully loaded on dbeogels. Furthermore, the
microscopic morphology of ZIF-67@CA was observed sganning electron
microscopy (SEM). The porous structure of the agregwell presented in Figure 2b
and abundant ZIF-67 crystals are attached to the walls of the aerogel unhindered,
indicating the successful fabrication of ZIF-67@@Ad the aerogel structure is not
destroyed by the doping method. In Figure 2c, taaling of ZIF-67 is significantly
increased, this will be further confirmed by thegravimetric analysis (TGA).
Microscopic shape integrity and uniform distributi@f ZIF-67 demonstrate the

simplicity and efficiency of the doping method (&ig 2d).

=
?
L

—— ZIF-67@CA
—— ZIF-67-simu
—GEL
—ZIF-67

Intensity (a.u.)

Figure 2. (a) XRD patterns; (b-d) Scanning electron micrpgrat different magnifications.

Nitrogen adsorption isotherm analysis was conduttethvestigate the specific
surface area and pore structure of ZIF-67 as showigure S1. The curve exhibits a
typical type | isotherm, which provides the evideraf mesoporous structure. The

specific surface area of ZIF-67 is up to 1639%gh and the pore size distribution

6
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curve illustrates that the average pore diametetl6f67 is 2.1 nm. The loading of
ZIF-67 was calculated by TGA (Figure S2 and Tall¢ &d the calculation method
of the load amount was obtained from the formulathe literature [17]. The
ZIF-67@CA prepared by doping method possessesheehigading (44.7 wt%) and
the loading amount can be regulated. After the mppf ZIF-67, the porosity of
ZIF-67@CA increased from 45.7% (pure CA) to 87.3%alkle S2). The doubled
porosity demonstrated that doping method would otk the pore structure of

aerogel at all.

2.2 The degradation performance of ZIF-67@CA

The degradation properties of ZIF-67@CA were suidig degrading two typical
pollutants TC and PNP, which were the represemabivantibiotics and phenolic
contaminants respectively. The ZIF-67@CA/PMS systeas used to study the
contaminant degradation performance. As showngurei 3, there is no change in the
concentration of the pollution using only PMS, rating that the PMS alone cannot
generate free radicals to degrade the pollutaneanwhile, the ZIF-67@CA have no
significant degradation performance without PM ($hght drop can be attributed to
the adsorption on the surface of the aerogel). Zlke67@CA and PMS system
exhibits excellent degradation performance anddbgradation rate reaches up to
80%. It is worth noting that ZIF-67@CA/PMS compketdegradation only in 20
minutes. Since ZIF-67@CA is prepared by doping wetbontained more ZIF-67,
more PMS in the system are activated and more&dieals are provided. In addition,
there is no interaction between cellulose aerogdl RMS and the slight decrease in

cellulose aerogel/PMS system is attributed to teogption of cellulose aerogel.

7
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Figure 3. The degradation efficiency of ZIF-67@CA/PMS systen?NP.

We further explored the degradation properties|&f@ @CA. To investigate the
degradation performance of ZIF-67@CA in differemtoaint of PMS, different doses
of PMS were added to the ZIF-67@CA/PMS system. rieéigte and b show the
degradation performance of ZIF-67@CA toward PNP &a@din different doses of
PMS, respectively. The results demonstrate thairtbeease of PMS has a positive
effect on the degradation performance of ZIF-67@@A different types of
contaminants.

2.3 The degradation efficiency of ZIF-67@CA in diént environments

Complex water environment is one of the importattdrs affect the practical
usability of cellulose composite aerogel. Thus, éffect of pH on the degradation of
composite aerogels was investigated in the pohutb PNP and TC, respectively.
Figure 4c and d show the degradation performanc&Ibi67@CA on organic
pollutants PNP and TC at the pH range of 4-9, respay. It is obvious that pH

conditions have no significant effect on the degtaxh of pollutants PNP and TC,

indicating that ZIF-67@CA/PMS system have excellpHt resistance. Even in an
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alkaline environment, the degradation process cancéarried out stably with

ZIF-67@CA/PMS system.

a),, b)
07 —~— PMS=20mg Lo —=— PMS=20mg
054 —— PMS=30mg 08 —— PMS=30mg
—— PMS=40mg
= 5 ~— PMS=40mg
< 0.6 = 06
o o
0.4 0.4
0.24 0.2 \\
0.0 : . ; ; . 0.0 e =
0 10 20 30 40 50 0 5 10 15 20 25 30
Reaction Time (min) Reaction Time (min)
C d)
1.0 4 ~ pH=4 1.04 ——pH=4
pH=6 ——pH=6
0.8 i 0.8 ——pH=7
e ——pH=9
S 06 pE=2 & 0.64
& o
0.4 0.4{ 1
0.2 \g__‘ 0.2
0.0 0.0
0 5 10 15 2 25 30 0 10 20 30 40 50
Reaction Time (min) Reaction Time (min)

Figure 4. The degradation efficiency of ZIF-67@CA toward P{# and TC (b) in the presence of
different amounts of PMS. The degradation efficien€ ZIF-67@CA toward PNP (a) and TC (b) in
different pH.

2.4 Recyclability of ZIF-67@CA

As another critical parameter, the recyclabilityZdF-67@CA plays a crucial role
of whether the ZIF-67@CA can work efficiently aneduce the cost in practical
applications. Thus, the recyclability of ZIF-67@®4as investigated in PNP and TC
as shown in Figure S3. The degradation performaric&lF-67@CA remains at
around 90% after 3 cycles without obvious decredeanwhile, there is no significant
change in the structure and morphology of the tdesalF-67@CA (Figure S4 and
S5), demonstrating the superior stability and rbilispof ZIF-67@CA. The excellent
degradation performance, stable structures andramaental friendliness of
ZIF-67@CA have realistic guiding significance fdret development of pollution

treatment.



a b ODN -

»

10

11

12

13

14

15

16

17

e o (| ZIF-67@CA]

Intensity (a.u.)

PMS

3475 3500 3525 3550
d) Magnetic field (G)

1.0 —— ZIF-67@CA
—=— ZIF-67@CA/MA

——ZIF-67@CA
——ZIF-6T@CAMA | 5
——ZIF-67@CA/TBA |5

0.4 L 44
0.2 . X 0.2
0 10 20 30 40 50 0 5 10 15 20 25 30

Reaction Time (min) Reaction Time (min)
Figure 5. (a) Mechanism schematic of ZIF-67@CA/PMS systengdoerate free radicals. (b) EPR
spectrum of ZIF-67@CA/PMS system for the removaPdiP. (c) and (d) Effect of capture agent on

degradation of PNP and TC, respectively. (PNP &oiut 20 mg C*; TC solution = 20 mg T; PMS =
600 mg '%; ZIF-67@CA = 600 mg [}; TBA =1 mL; MA =1 mL; pH = 6; T = 25°C).
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2.5 Degradation mechanism of ZIF-67@CA

In ZIF-67@CA/PMS system, the cobalt ions of ZIFfa&y a crucial role to active
PMS. As shown in Figure 5a, the cobalt ions redtlt WSO;™ to generate SO and
*OH through changing the state betweerf'Gmd C3*[18]. The SQ™~ with strong
oxidation potential effectively degrades PNP and iiit® intermediates and further
converts to non-toxic small molecules. Meanwhilecgon paramagnetic resonance
(EPR) test demonstrate the generation of S&hd «OH in Figure 5b. A large number
of free radicals were generated while adding ZIFEA@MS to PNP solution, while
there was no response in an environment with oMy PFurthermore, two different

free radicals were detected in the system: thegpeéik an intensity ratio of 1:2:2:1

represent «OH (DMPO-+OHiy = any = 14.9 G), and the peaks around the signals of

*OH belonged to DMPO-SO (a

13.2G, 04 = 9.6G, oy = 1.48G,on =

10
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0.78G) suggesting the existence of,S{19]. The result proved that SOand «OH
were the key for the degradation of organic polfitga In addition, in order to
distinguish the dominant role of specific radicaisthe degradation of pollutants,
tert-butanol (TBA) and methanol (MA) were used &pfure *OH and S in both
PNP and TC, respectively. As shown in Figure 5@ dbntaminants were not
substantially removed when MA was added, while tleenoval rate of the
contaminants was greatly increased when TBA wasddsduggesting that SO
played a major role and «OH was auxiliary in thgrdeation of PNP. Furthermore,
when TBA was added in TC solution with PMS, ZIF-6Z@® showed nearly no
effect on the degradation of TC. On the contrang, degradation performance was
greatly affected when the MA was added (Figure B8 results may attribute to the
complexity and stability of TC structure, compaseith the weaker oxidizing *OH,
the SQ™ showed a strong oxidizing ability to decompose fereby achieving the
degradation of TC.
3. Conclusion

In brief, we innovatively developed a simple dopimgthod and successfully
synthesized high MOFs loading hybrid aerogels. M@E®# provide external pores,
controllable loading amount and superior recyclgbilFurthermore, doping method
largely increases the loading of hybrid aerogefs {4vt%) and efficiently improves
the degradation ability of pollutants. The degramatate of organic pollutants is up to

80% within 20 min in ZIF-67@CA/PMS system, andahde widely used in various
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pH range of pollutants. Thus, the low-cost and emrnentally friendly production

method may effectively expand its applications wmider field in the future.

Supporting Information

The experimental details, SEM, BET, XRD and TGAh# samples.
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