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Facile doping method is developed to fabricate the ZIF-67@CAs. The strategy can effectively 

disperse MOFs uniformly. The ZIF-67@CAs combines the degradation performance of MOFs and 

the shape ability of aerogels, which can effectively improve the degradation performance. The 

degradation mechanism shows that ZIF-67@CAs can effectively purify organic pollutants in water. 

The strategy can be applied to various MOF catalysts in wastewater treatment and thereby 

expanding their application in a wider range of fields. 
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 1 

Abstract：Metal-organic frameworks (MOFs) can efficiently degrade stubborn 2 

organic pollutants via advanced oxidation process. However, it is essential to find 3 

ways to shape MOFs if its promise of practical application is to be realized. Herein, 4 

we develop a Zeolitic Imidazolate Framework-67 (ZIF-67)@cellulose aerogel (denoted 5 

as ZIF-67@CA) by a facile doping method. The strategy enhances actual macroscopic 6 

shape ability and external hierarchical porosity. Cellulose can provide mechanical 7 

flexibility to shape MOFs and promote recycle efficiency after water treatment. The 8 

novel doping method increases the loading and dispersibility of ZIF-67, which further 9 

increases the potential for the degradation of organic pollutants. ZIF-67@CA can take 10 

advantage of the accessible surface area and metal catalytic sites of ZIF-67 to activate 11 

peroxymonosulfate (PMS) efficiently and promote its degradation of p-nitrophenol 12 

(PNP) and tetracycline hydrochloride (TC). The degradation rate of organic pollutants 13 

is up to 80% within only 20 min. Furthermore, ZIF-67@CA exhibits excellent pH 14 

stability and recyclability so that it can be reused in harsh environments. Therefore, the 15 

low-cost and environmental-friendly production method can effectively recycle 16 

high-performance MOFs and expand its applications in a wider range of fields. 17 

Keywords: metal-organic frameworks; doping method; cellulose aerogel; advanced 18 

oxidation process; organic pollutant 19 

1. Introduction 20 

Recently, water pollution is considered as one of the most serious environmental 21 

problems, which has caused a huge impact on human life and health. Toxic substances 22 
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and organic pollutants in wastewater such as p-nitrophenol (PNP) and tetracycline 1 

hydrochloride (TC) not only destroy ecosystems but also pose a great threat to aquatic 2 

life and even human beings [1]. Thus, the efficient and cost-effective biological 3 

approached are urgently developed to remove pollutants from toxicity and 4 

recalcitrance. Various technologies have been proposed to remove pollutants from 5 

water, such as adsorption [2], oxidation [3], photocatalysis degradation [4], 6 

electrodegradation [5] and advanced oxidation processes (AOPs) [6]. Given high 7 

efficiency, wide application range and chemical stability, AOPs have caused 8 

widespread concern by using hydroxyl radicals (•OH) and sulfate radical anions (SO4
•–) 9 

as powerful oxidizing species [7]. Specially, the generated SO4
•– from the activation of 10 

peroxymonosulfate (PMS) exhibit efficient degradation rate of organic pollutants due 11 

to its high redox potential (2.5-3.1 V), high selectivity and wide operating pH range [8]. 12 

Currently, the solid catalysts including transition metals (e.g. Co, Fe, Mn and Cu) are 13 

used as activators of PMS [9]. Although these catalysts show good degradation 14 

properties, the secondary pollution of the toxic ion dissolution and the difficulty in 15 

separation and recovery limit their practical applications [10]. Thus, lots of efforts have 16 

been done to overcome those above mentioned defects. Recently, metal-organic 17 

frameworks (MOFs) have attracted great attention as promising heterogeneous 18 

catalysts due to their high specific surface areas, tunable porous structure, and 19 

modifiability [11]. Meanwhile, transition metal based MOFs exhibit ultrahigh activity 20 

for activating PMS, which can be beneficial to promote the degradation reaction [12]. 21 

For example, Zeolitic Imidazolate Framework-67 (ZIF-67) coordinated by cobalt ion 22 
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and dimethylimidazole, which can obtain through facile method and provide cobalt ion 1 

to activate PMS. However, MOF particles are not easy to be separated from the 2 

suspension, which greatly affect their recovery and reusability, and hinder their 3 

practical applications. Thus, it is urgent to develop environmental friendly and 4 

recyclable supporting substrates to collect MOF particles. 5 

Cellulose aerogels (CAs) have been considered as one of the most potential 6 

supporting materials for water treatment in view of their low-cost, biodegradability, 7 

aqueous stability and recyclability [13]. As supporting substrates, cellulose aerogels 8 

have the following characteristics: (a) the porous structure effectively promotes the 9 

adsorption of wastewater; (b) the stable physical and chemical properties make sure 10 

that they can work in complex environments; (c) the good mechanical stability 11 

endows CAs with excellent recyclability to achieve the separation and recovery of 12 

catalysts [14]. MOFs@cellulose composites have been developed for wastewater 13 

treatment in recent years [15]. However, loading MOFs on cellulose aerogels for 14 

degradation of organic pollutants is quite challenging and rare studies were reported.  15 

In our present work, a facile doping method is developed to fabricate the 16 

ZIF-67@CA with high loading (44.7 wt%). The composite materials possess 17 

excellent catalytic degradation ability of MOFs, and combines the plasticity and the 18 

external hierarchical porosity of cellulose aerogel. ZIF-67@CA showed excellent 19 

degradation performance (up to 80% within 20 min) for both PNP and TC. In addition, 20 

ZIF-67@CA presented outstanding pH tolerance and cyclical stability, which is of 21 

great significance for practical applications. Our method provides a low-cost, 22 



5 
 

sustainable and scalable platform for the full utilization and recycling of MOFs 1 

materials. 2 

2. Results and Discussions 3 

In view of the harmfulness of organic pollutants and the difficulty of 4 

self-degradability, it is necessary to develop new catalytic materials, which are highly 5 

efficient, degradable and recyclable [16]. 6 

The ZIF-67@CA was prepared by a novel and simple doping method (the details 7 

were presented in Supporting Information). This method is extremely beneficial for 8 

increasing the load of ZIF-67 and uniform dispersion of ZIF-67. Meanwhile, the 9 

appearance morphology of ZIF-67@CA is more controllable. The obtained 10 

ZIF-67@CA is showed in Figure 1, the bright purple of ZIF-67@CA is consistent with 11 

that of ZIF-67, and the ZIF-67@CA maintain a well-defined shape with the excellent 12 

properties of aerogels.  13 

 14 
Figure 1. Photograph of ZIF-67@CA and the scheme of ZIF-67, PNP and TC structures. 15 

2.1 Characterization of ZIF-67@CA 16 

The powder X-ray diffraction (XRD) was used to demonstrate the crystal structure of 17 

ZIF-67 in the aerogels. As shown in Figure 2a, the cellulose aerogels show a broad 18 
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diffraction peaks around 20°, which is a typical crystalline structure for the cellulose. 1 

The XRD patterns of ZIF-67@CA is similar to that of ZIF-67 powder, indicating the 2 

pure phase of ZIF-67 is successfully loaded on the aerogels. Furthermore, the 3 

microscopic morphology of ZIF-67@CA was observed by scanning electron 4 

microscopy (SEM). The porous structure of the aerogel is well presented in Figure 2b 5 

and abundant ZIF-67 crystals are attached to the pore walls of the aerogel unhindered, 6 

indicating the successful fabrication of ZIF-67@CA and the aerogel structure is not 7 

destroyed by the doping method. In Figure 2c, the loading of ZIF-67 is significantly 8 

increased, this will be further confirmed by thermogravimetric analysis (TGA). 9 

Microscopic shape integrity and uniform distribution of ZIF-67 demonstrate the 10 

simplicity and efficiency of the doping method (Figure 2d).  11 

 12 
Figure 2. (a) XRD patterns; (b-d) Scanning electron micrograph at different magnifications. 13 

Nitrogen adsorption isotherm analysis was conducted to investigate the specific 14 

surface area and pore structure of ZIF-67 as shown in Figure S1. The curve exhibits a 15 

typical type I isotherm, which provides the evidence of mesoporous structure. The 16 

specific surface area of ZIF-67 is up to 1639.6 m2 g-1, and the pore size distribution 17 
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curve illustrates that the average pore diameter of ZIF-67 is 2.1 nm. The loading of 1 

ZIF-67 was calculated by TGA (Figure S2 and Table S1) and the calculation method 2 

of the load amount was obtained from the formula in the literature [17]. The 3 

ZIF-67@CA prepared by doping method possesses a higher loading (44.7 wt%) and 4 

the loading amount can be regulated. After the doping of ZIF-67, the porosity of 5 

ZIF-67@CA increased from 45.7% (pure CA) to 87.3% (Table S2). The doubled 6 

porosity demonstrated that doping method would not block the pore structure of 7 

aerogel at all.  8 

2.2 The degradation performance of ZIF-67@CA 9 

The degradation properties of ZIF-67@CA were studied by degrading two typical 10 

pollutants TC and PNP, which were the representative of antibiotics and phenolic 11 

contaminants respectively. The ZIF-67@CA/PMS system was used to study the 12 

contaminant degradation performance. As shown in Figure 3, there is no change in the 13 

concentration of the pollution using only PMS, indicating that the PMS alone cannot 14 

generate free radicals to degrade the pollutants. Meanwhile, the ZIF-67@CA have no 15 

significant degradation performance without PMS (the slight drop can be attributed to 16 

the adsorption on the surface of the aerogel). The ZIF-67@CA and PMS system 17 

exhibits excellent degradation performance and the degradation rate reaches up to 18 

80%. It is worth noting that ZIF-67@CA/PMS completes degradation only in 20 19 

minutes. Since ZIF-67@CA is prepared by doping method contained more ZIF-67, 20 

more PMS in the system are activated and more free radicals are provided. In addition, 21 

there is no interaction between cellulose aerogel and PMS and the slight decrease in 22 

cellulose aerogel/PMS system is attributed to the adsorption of cellulose aerogel. 23 
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 1 
Figure 3. The degradation efficiency of ZIF-67@CA/PMS system in PNP. 2 

We further explored the degradation properties of ZIF-67@CA. To investigate the 3 

degradation performance of ZIF-67@CA in different amount of PMS, different doses 4 

of PMS were added to the ZIF-67@CA/PMS system. Figure 4a and b show the 5 

degradation performance of ZIF-67@CA toward PNP and TC in different doses of 6 

PMS, respectively. The results demonstrate that the increase of PMS has a positive 7 

effect on the degradation performance of ZIF-67@CA for different types of 8 

contaminants.  9 

2.3 The degradation efficiency of ZIF-67@CA in different environments  10 

Complex water environment is one of the important factors affect the practical 11 

usability of cellulose composite aerogel. Thus, the effect of pH on the degradation of 12 

composite aerogels was investigated in the pollution of PNP and TC, respectively. 13 

Figure 4c and d show the degradation performance of ZIF-67@CA on organic 14 

pollutants PNP and TC at the pH range of 4-9, respectively. It is obvious that pH 15 

conditions have no significant effect on the degradation of pollutants PNP and TC, 16 

indicating that ZIF-67@CA/PMS system have excellent pH resistance. Even in an 17 
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alkaline environment, the degradation process can be carried out stably with 1 

ZIF-67@CA/PMS system.  2 

 3 
Figure 4. The degradation efficiency of ZIF-67@CA toward PNP (a) and TC (b) in the presence of 4 
different amounts of PMS. The degradation efficiency of ZIF-67@CA toward PNP (a) and TC (b) in 5 
different pH. 6 
 7 
.2.4 Recyclability of ZIF-67@CA 8 

As another critical parameter, the recyclability of ZIF-67@CA plays a crucial role 9 

of whether the ZIF-67@CA can work efficiently and reduce the cost in practical 10 

applications. Thus, the recyclability of ZIF-67@CA was investigated in PNP and TC 11 

as shown in Figure S3. The degradation performance of ZIF-67@CA remains at 12 

around 90% after 3 cycles without obvious decrease. Meanwhile, there is no significant 13 

change in the structure and morphology of the reusable ZIF-67@CA (Figure S4 and 14 

S5), demonstrating the superior stability and reusability of ZIF-67@CA. The excellent 15 

degradation performance, stable structures and environmental friendliness of 16 

ZIF-67@CA have realistic guiding significance for the development of pollution 17 

treatment.  18 
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 1 
Figure 5. (a) Mechanism schematic of ZIF-67@CA/PMS system to generate free radicals. (b) EPR 2 
spectrum of ZIF-67@CA/PMS system for the removal of PNP. (c) and (d) Effect of capture agent on 3 
degradation of PNP and TC, respectively. (PNP solution = 20 mg L−1; TC solution = 20 mg L−1; PMS = 4 
600 mg L−1; ZIF-67@CA = 600 mg L−1; TBA = 1 mL; MA = 1 mL; pH = 6; T = 25°C). 5 

2.5 Degradation mechanism of ZIF-67@CA  6 

In ZIF-67@CA/PMS system, the cobalt ions of ZIF-67 play a crucial role to active 7 

PMS. As shown in Figure 5a, the cobalt ions react with HSO5
– to generate SO4

•– and 8 

•OH through changing the state between Co2+ and Co3+ [18]. The SO4
•– with strong 9 

oxidation potential effectively degrades PNP and TC into intermediates and further 10 

converts to non-toxic small molecules. Meanwhile, electron paramagnetic resonance 11 

(EPR) test demonstrate the generation of SO4
•– and •OH in Figure 5b. A large number 12 

of free radicals were generated while adding ZIF67@CA/PMS to PNP solution, while 13 

there was no response in an environment with only PMS. Furthermore, two different 14 

free radicals were detected in the system: the peaks with an intensity ratio of 1:2:2:1 15 

represent •OH (DMPO-•OH: αH = αN = 14.9 G), and the peaks around the signals of 16 

•OH belonged to DMPO-SO4
•– (αN = 13.2G, αH ＝ 9.6G, αH ＝ 1.48G, αN ＝ 17 
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0.78G) suggesting the existence of SO4
•– [19]. The result proved that SO4

•– and •OH 1 

were the key for the degradation of organic pollutants. In addition, in order to 2 

distinguish the dominant role of specific radicals in the degradation of pollutants, 3 

tert-butanol (TBA) and methanol (MA) were used to capture •OH and SO4
•– in both 4 

PNP and TC, respectively. As shown in Figure 5c, the contaminants were not 5 

substantially removed when MA was added, while the removal rate of the 6 

contaminants was greatly increased when TBA was added, suggesting that SO4
•– 7 

played a major role and •OH was auxiliary in the degradation of PNP. Furthermore, 8 

when TBA was added in TC solution with PMS, ZIF-67@CA showed nearly no 9 

effect on the degradation of TC. On the contrary, the degradation performance was 10 

greatly affected when the MA was added (Figure 5d). The results may attribute to the 11 

complexity and stability of TC structure, compared with the weaker oxidizing •OH, 12 

the SO4
•– showed a strong oxidizing ability to decompose TC, thereby achieving the 13 

degradation of TC. 14 

3. Conclusion 15 

In brief, we innovatively developed a simple doping method and successfully 16 

synthesized high MOFs loading hybrid aerogels. MOFs@CA provide external pores, 17 

controllable loading amount and superior recyclability. Furthermore, doping method 18 

largely increases the loading of hybrid aerogels (44.7 wt%) and efficiently improves 19 

the degradation ability of pollutants. The degradation rate of organic pollutants is up to 20 

80% within 20 min in ZIF-67@CA/PMS system, and it can be widely used in various 21 
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pH range of pollutants. Thus, the low-cost and environmentally friendly production 1 

method may effectively expand its applications in a wider field in the future. 2 

 3 
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