ChemComm

COMMUNICATION

Cite this: Chem. Commun., 2014, 50, 15435

Received 18th August 2014, Accepted 15th October 2014

DOI: 10.1039/c4cc06480a

www.rsc.org/chemcomm

S-rich single-layered MoS₂ nanoplates embedded in N-doped carbon nanofibers: efficient co-electrocatalysts for the hydrogen evolution reaction[†]

Han Zhu,^a MingLiang Du,*^{ab} Ming Zhang,^{ab} MeiLing Zou,^a TingTing Yang,^a ShunLi Wang,^c JuMing Yao^{ab} and BaoChun Guo^d

S-rich MoS_2 -NCNF hybrid nanomaterials exhibiting extraordinary HER activity, with a very low onset potential of 30 mV and a small Tafel slope of 38 mV per decade, were successfully fabricated by combining N-doped carbon nanofibers and single-layered MoS_2 nanostructures with abundant edge active sites.

With the growing scientific and societal interest in energy and environmental protection on the global scale, the development of technologies for clean and sustainable hydrogen energy production has been attracting great attention.^{1,2} With the aim of producing hydrogen by environmentally friendly means, the electrocatalytic hydrogen evolution reaction (HER) has been considered as one of the most sustainable and efficient approaches to generate hydrogen, in which Pt-based materials always serve as the catalysts in order to reduce overpotential and increase energy efficiency.³⁻⁵ Until now, Pt-based catalysts have been generally considered as the most effective HER electrocatalysts,⁶ while their large scale application is largely hindered by the low abundance and high cost of Pt. Hence, employment of a low-cost and highly efficient electrocatalyst to replace Pt-based catalysts for the HER has attracted increasing interest in the area of renewable energy research.^{7,8}

Many efforts have been devoted to the search for nonprecious-metal based HER catalysts in recent decades. Various noble-metal-free catalyst materials, such as transition metal sulfides,^{3,4,9} cobalt compounds⁵ and N-doped carbon materials,^{5,9,10} have been creatively developed to partially substitute the role of Pt in HER. As a typical two-dimensional (2D) material with rich

physical and chemical properties and broad applications, molybdenum disulfide (MoS₂) is an exciting HER catalyst that exhibits promising HER activity in crystalline or amorphous materials and molecular mimics.^{3,9,10} In the hydrogen evolution process, based on density functional theory (DFT) calculations, the sulfur atoms of the MoS₂ edges are easily bound to hydrogen atoms, which are 2-fold coordinated to molybdenum.¹¹ Theoretical and experimental studies both indicate that the edges of MoS₂ are catalytically active while the basal plane remains inert.⁴ However, its catalytic HER performance is currently limited by the density and reactivity of the active sites and poor electrical transport. To improve the HER activity of MoS₂, two aspects should be considered. The strong van der Waals interactions existing among the lamellar crystals will inevitably result in the aggregation phenomenon, which decreases the number of active sites as well as the whole electrocatalytic activity.⁴ This means that larger sized MoS₂ nanosheets with multilayers could not generate enough active sites. The other aspect is the poor conductivity of MoS₂ due to the lateral transfer of electrons along the lamella structure of the MoS₂ nanosheets, which restricts efficient electron transfer as well as the related electrochemical kinetics.^{3,11} Therefore, designing MoS₂ catalysts with few layers, a small size and rich in sulphur atoms would be an effective strategy to generate more active sites, enhancing their electrocatalytic activity in the HER.

A good electrocatalyst would be nanometer-large MoS_2 crystallites supported on carbon-based materials, which are conducting but otherwise inert.^{11–13} Recently, Rao *et al.*¹⁴ prepared a MoS_2 composite with nitrogen-doped reduced graphite oxide and it showed excellent HER activity, demonstrating that nitrogen incorporated graphene could be expected to improve the catalytic activity of a composite with MoS_2 layers due to the enhanced electron donating ability of the N-doped graphene. N-doped carbon materials have high electrical conductivity, due to p-delocalization, and high thermal conductivity. In addition, they also exhibit promising HER activity together with a higher stability and a higher poisoning resistance than Pt/C.^{10,15}

In the present investigation, we aim to fabricate nanoscale crystallites with single or few layers and rich in S atoms to

^a Department of Materials Engineering, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China

 ^b Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Ministry of Education, Hangzhou 310018,
P. R. China. E-mail: du@zstu.edu.cn; Tel: +86-571-86843255

^c Department of Physics, Center for Optoelectronics Materials and Devices, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China

^d Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P. R. China

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cc06480a

generate more active sites for the HER. Meanwhile, N-doped carbon nanofibers (NCNFs) not only serve as a support to confine the growth of the MoS₂ nanoplates but also provide good conductivity and active sites for the generation of hydrogen. The Mo precursor, $(NH_4)_2MOS_4$ was firstly dissolved with polyacrylonitrile (PAN) and then electrospun into PAN- $(NH_4)_2MOS_4$ precursor (PANMo) nanofibers. After treatment with S vapor at 400 °C for 2 h and graphitization at 1000 °C for 8 h, small and uniform MoS₂ nanoplates with single-layered structures and abundant exposed edges were formed in the NCNFs (experimental details can be found in the ESI†). The synergistic effects between the S-rich single-layered MoS₂ nanoplates and the NCNFs have shown extraordinary results in H₂ evolution, with a very low onset potential of 30 mV and a small Tafel slope of 38 mV per decade.

Fig. 1a displays the typical morphology of the S-rich MoS_2 nanoplates embedded in NCNFs. Compared with the pure CNFs and MoS_2 -CNFs (Fig. S1, ESI[†]), the S-rich MoS_2 -NCNFs possess abundant pores caused by the S vapor, leaving a notable space inside, which is beneficial for allowing the access of electrolytes to the MoS_2 nanoplates. The average diameter of the S-rich MoS_2 -NCNFs decreases to 210 ± 50 nm, as compared with the PANMo nanofibers (Fig. S2, ESI[†]), indicating a high aspect ratio. Fig. 1b shows the unique morphology of the extremely thin and small wave-like MoS_2 nanostructures that are uniformly embedded in the NCNFs, without any stacking layers.

The lateral dimension of the single-layered MoS_2 nanostructure is around 8 nm, as verified by high resolution transmission electron microscopy (HRTEM) images (Fig. 1c). In addition, the thickness of the MoS_2 is 0.4 nm (Fig. 1c), which is in accordance with the spacing between the two S layers (sandwiching the Mo layer), hence indicating the presence of single-layered MoS_2 .¹⁴ More images are shown in Fig. S3 (ESI†). From Fig. 1d and the inset, high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images indicate that the irregular platelike morphology of MoS_2 can be clearly seen and that no visible aggregated nanoplates occur because of the space-confined growth. Approximately, the MoS_2 nanoplates stacked perpendicularly on the underlying substrates and possess highly exposed edges with

Fig. 1 (a) FE-SEM, (b) TEM, (c) HRTEM and (d) HAADF-STEM images of the S-rich MoS₂–NCNFs hybrid nanomaterial; (e–i) STEM-EDS mapping images and (j) line scan EDX spectra of selected areas of the S-rich MoS₂–NCNFs.

slightly folded dentations on the rim, significantly increasing the exposure of active edge sites. In addition, the NCNFs can not only confine the growth and dispersion of the MoS₂ nanoplates to guarantee the exposure of active edge sites but also can facilitate electron transfer during the electrocatalysis, leading to highly improved conductivity of the composite.^{12,13} The drastic morphological difference highlights the important role of NCNFs as a novel support material for the design of new MoS₂ nanostructures with highly active sites. As illustrated in Fig. 1e to i, the STEM-EDS mapping clearly confirms the formation of S-rich MoS₂ nanoplates embedded in NCNFs. Fig. 1f and g exhibit the nitrogen and carbon elements, which are in accordance with the mapping area, demonstrating the presence of N-doped CNFs. The Mo and S elemental images reveal an even distribution across the whole CNFs, confirming the presence of S-rich MoS₂ nanostructures. The line-scan energy dispersive X-ray (EDX) spectra (Fig. 1j) display the relative intensity of the C, N, Mo and S elements, also confirming the successful fabrication of S-rich MoS₂ nanoplates.

As shown in Fig. 2a, the X-ray diffraction (XRD) pattern of the original PANMo has a sharp intense peak at 16.8°, corresponding to the (100) diffraction of the PAN crystalline phase. The NCNFs exhibit a representative diffraction peak (002) of the stacked graphite layers (JCPDS 75-1621) at $2\theta = 23.5^{\circ}$, demonstrating the crystalline structures of the graphitic carbon in the NCNFs.¹⁶ For the S-rich MoS₂-NCNFs, only two new peaks appeared, at 42.6° (103) and 64.2° (110), revealing a single phase of MoS₂ in the hybrid. Previous literature^{4,9} has reported that the distinctive strong (002) peak of pure MoS_2 at $2\theta = 14.8^{\circ}$ signifies a well-stacked layered structure, while the disappearance of the (002) peak indicates that stacking of the single layers does not take place. In the present investigation, the S-rich MoS_2 -NCNFs does not show any (002) peaks and therefore, together with the TEM and HAADF-STEM results we can infer that the MoS₂ nanoplates should have a single-layered or few-layer structure with abundant catalytically active sites. Raman spectra are shown in Fig. S4 (ESI[†]).

Fig. 2 (a) XRD pattern of the PANMo nanofibers, pure NCNFs and the S-rich MoS₂–NCNFs hybrid. High-resolution XPS of the (b) N 1s, (c) Mo 3d and (d) S 2p spectra of the S-rich MoS₂–NCNFs.

ChemComm

The chemical state of the S-rich MoS₂-NCNFs was further confirmed by XPS analysis. The C 1s spectra demonstrate a significant amount of charge transfer from the graphitic carbon to the MoS₂ nanoplates, which are shown in Fig. S5 (ESI⁺). The N1s spectra of the S-rich MoS₂-NCNFs revealed three N characteristic peaks, as shown in Fig. 2b. The two peaks at lower binding energies (about 398.4 and 400.5 eV) correspond to pyridinic and pyrrolic N, respectively, which contribute electron density to the p-conjugated system with a pair of p-electrons in the graphitic carbon layers.¹⁸ The peak at 401.1 eV was due to N atoms substituted for C within the graphene, referred to as graphitic N. Previous research reported that pyridinic N and graphitic N at higher concentrations were more effective than pyrrolic N at improving the electrochemical performance of N-doped carbon materials.¹⁸ In addition, Li¹⁹ et al. reported the positive effects of pyridinic and graphitic N on the hydrogen evolution reaction. Compared with pyrrolic N, the pyridinic and graphitic N have the dominant concentrations (calculated by XPS spectra) and hence, it could benefit the HER activity due to the positive synergistic effect between S-rich MoS₂ and NCNFs. As shown in Fig. 2c, three characteristic peaks emerged at 232.3, 229.1 and 225.4 eV, corresponding to Mo $3d_{3/2}$, Mo $3d_{5/2}$ and S 2s binding energies, respectively. According to the literature,^{9,17} the binding energies of the Mo 3d are close to the 1T phase of MoS₂, and the 1T phase of MoS₂ is meta-stable, providing a prediction of better HER performance. The S 2p spectra (Fig. 2c) can be deconvoluted to three main peaks located at about 163.7, 164.4 and 165.1 eV, which relate to S $2p_{3/2}$ and S $2p_{1/2}$ for S²⁻ and S₂²⁻ binding energies, respectively. The atomic ratio of S to Mo for MoS₂-NCNFs is calculated to be 2.32:1 by XPS spectra, which is much larger than commonly reported for MoS₂.^{4,9} The existence of bridging S_2^{2-} and/or apical S^{2-} and terminal S_2^{2-} and/or S^{2-} , suggests that a S-rich MoS₂ structure has been formed in the NCNFs hybrid. It is reported that MoS₂ with more active S edge sites is highly active for HER.4,9

To evaluate the electrochemical performance of the S-rich MoS₂-NCNFs, linear sweep voltammetry (LSV) of various electrocatalysts was investigated in a 0.5 M H₂SO₄ solution using a typical three-electrode system. Pure MoS₂, N-doped CNFs, S and N co-doped CNFs, MoS₂-CNFs prepared without S vapor, and Pt/C were investigated for reference. As shown in Fig. 3a, the Pt/C catalyst exhibits extremely high HER catalytic activity with a near zero overpotential. Pure MoS₂ displays negligible HER performance and a high onset potential (about 210 mV), as well as a low cathodic current density. The NCNFs and S-NCNFs both exhibit small HER activities with onset potentials of about 180 and 170 mV, indicating that the N- and S-doped CNFs indeed have catalytic activity for the generation of H₂. It has been observed that the incorporation of nitrogen and sulphur enhances the electron-donor or basic capacities of the carbon material, thereby enhancing the HER activity. The as-prepared MoS₂ without S vapor treatment also has a nanoplate morphology (Fig. S2, ESI⁺). The MoS₂-NCNFs obtain a low onset potential of about 98 mV, as well as a relatively high cathodic current density, indicating a synergistic effect between the N-doped CNFs and MoS2 nanostructures that improves the

Fig. 3 (a) Polarization curves of a GCE electrode recorded in N₂ purged 0.5 M H_2SO_4 for various electrocatalysts. Scan rate: 2 mV s⁻¹. (b) The corresponding Tafel plots for various electrocatalysts. (c) Nyquist plots of EIS for various electrocatalysts at a modified GCE. (d) Stability test of the S-rich MoS₂–NCNFs electrocatalyst. Negligible HER current was lost after 1000 cycles of cyclic voltammetry from -0.4 to 0.2 V vs. RHE.

HER activity. The S-rich MoS_2 -NCNFs hybrid obtains the lowest onset potential, of about 30 mV. The onset potential of the S-rich MoS_2 -NCNFs is about 30 mV, which is comparable to that of Pt/C and means low energy consumption occurs in the catalytic process.

Moreover, the S-rich MoS₂-NCNFs also display the largest cathodic current density of all the tested samples, with 10 mA $\rm cm^{-2}$ at an overpotential of 120 mV, which is larger than that of previously reported MoS₂ carbon systems and close to the values for commercial Pt/C.^{4,9,17} The cathodic current density is proportional to the quantity of evolved hydrogen, and hence, the large current density here demonstrates prominent hydrogen evolution behaviour. Compared with the HER performance of MoS₂-NCNFs, with a overpotential of 230 mV at 10 mA cm⁻², the S-rich MoS₂ nanoplates possess a certain amount of bridging disulfides S_2^{2-} and apical S^{2-} , which are highly active edge sites for HER. The good catalytic behaviour of the S-rich MoS₂-NCNFs hybrid may arise from the synergetic effect of major exposed active edge sites, N-doped carbon and excellent internal electrical conductivity. In addition, because of the porous structure of the nanofibers, the electrolyte can easily access the MoS₂ nanoplates embedded in the NCNFs, leading to enhanced HER activity.

To obtain further insight into the S-rich MoS_2 -NCNFs, the corresponding Tafel plots of the various selected catalysts were investigated (Fig. 3b). The S-rich MoS_2 -NCNFs obtain the smallest Tafel slope of 38 mV per decade, which is very close to that of the Pt/C catalyst (30 mV per decade).¹⁶ Meanwhile, the Tafel plots of pure MoS_2 , NCNFs, S-NCNFs and MoS_2 -NCNFs are ~170, ~129, ~104, and ~55 mV per decade, respectively. The small Tafel slope of the S-rich MoS_2 -NCNFs is advantageous for practical applications because it will lead to faster incrementation of the HER rate with increasing overpotential. The Tafel plots of S-rich MoS_2 -NCNFs are higher than those reported for MoS_2 based catalysts (~50⁴ and 45¹⁷ mV), suggesting the

interspatial-confinement growth method could be a promising way to prepare low-cost and highly efficient HER catalysts.

Fig. 3c shows the corresponding electrochemical impedance spectroscopy (EIS) spectra of various electrocatalysts, in order to further investigate the interface reactions and electrode kinetics of the catalysts in the HER. Nyquist plots reveal a dramatically decreased charge-transfer resistance (R_{ct}) for S-rich MoS₂-NCNFs (207 Ω) relative to the MoS₂-CNFs (596 Ω), S-NCNFs (874 Ω), NCNFs (987 Ω) and pure MoS₂ (2.4 k Ω). The small resistances observed for MoS2-NCNFs and S-rich MoS₂-NCNFs indicate the importance of the synthesis of MoS₂ incorporated with conductive substrates, which enables simple and effective electrical integration that minimizes parasitic ohmic losses. After 1000 cycles of continuous operation, the S-rich MoS₂-NCNFs catalyst shows almost negligible decay in the electrocatalytic current density (Fig. 3d), indicating excellent HER activity with reasonable long-term stability. The graphitic carbon protects the MoS₂ nanoplates from poisoning or delamination from the electrolyte, leading to only a slight loss in catalytic activity.

In summary, we developed a facile approach to design and fabricate S-rich small and single-layered MoS_2 nanoplates grown in N-doped CNFs. It was shown that the S-rich MoS_2 -NCNFs hybrid nanomaterial exhibited extraordinary HER activity, with a very low onset potential of 30 mV and a small Tafel slope of 38 mV per decade, due to synergistic effects. Graphitic carbon layers acted as a channel for transferring electrons to MoS_2 in the MoS_2 -NCNFs hybrid, this together with the abundant catalytic activity of the MoS_2 nanoplates and pyridinic N and graphitic N, lead to excellent HER activity.

This work was supported by the National Natural Science Foundation of China (NSFC) (51373154, 51202218), the 521 Talent Project of Zhejiang Sci-Tech University and the Science and Technology Department of Zhejiang Province Foundation (Grant No. 2014C37073).

Notes and references

- 1 Z. Y. Lu, H. T. Wang, D. S. Kong, K. Yan, P. C. Hsu, G. Y. Zheng, H. B. Yao, Z. Liang, X. M. Sun and Y. Cui, *Nat. Commun.*, 2014, 5, 4345–4351.
- 2 J. Deng, P. J. Ren, D. H. Deng, L. Yu, F. Yang and X. H. Bao, *Energy Environ. Sci.*, 2014, 7, 1919–1923.
- 3 C. G. Morales-Guio, L. A. Stern and X. L. Hu, *Chem. Soc. Rev.*, 2014, 43, 6555–6569.
- 4 W. J. Zhou, D. M. Hou, Y. H. Sang, S. H. Yao, J. Zhou, G. Q. Li, L. G. Li, H. Liu and S. W. Chen, *J. Mater. Chem. A*, 2014, **2**, 11358–11364.
- 5 M. Shalom, S. Gimenez, F. Schipper, I. Herraiz-Cardona, J. Bisquert and M. Antonietti, *Angew. Chem., Int. Ed.*, 2014, **53**, 3654–3658.
- 6 R. A. Periana, D. J. Taube, S. Gamble, H. Taube, T. Satoh and H. Fujii, *Science*, 1998, **280**, 560–564.
- 7 N. Daems, X. Sheng, I. F. J. Vankelecom and P. P. Pescarmona, J. Mater. Chem. A, 2014, 2, 4085–4110.
- 8 S. Chen, J. J. Duan, M. Jaroniec and S. Z. Qiao, *Adv. Mater.*, 2014, **26**, 2925–2930.
- 9 X. Zhao, H. Zhu and X. R. Yang, Nanoscale, 2014, 6, 10680-10685.
- 10 H. T. Wang, Z. Y. Lu, D. S. Kong, J. Sun, T. M. Hymel and Y. Cui, ACS Nano, 2014, 8, 4940–4947.
- 11 T. F. Jaramillo, K. P. Jorgensen, J. Bonde, J. H. Nielsen, S. Horch and I. Chorkendorff, *Science*, 2007, **317**, 100–102.
- 12 K. Chang, Z. W. Mei, T. Wang, Q. Kang, S. X. Ouyang and J. H. Ye, ACS Nano, 2014, 8, 7078–7087.
- 13 X. B. Wang, Y. J. Zhang, C. Y. Zhi, X. Wang, D. M. Tang, Y. B. Xu, Q. H. Weng, X. F. Jiang, M. Mitome, D. Golberg and Y. Bando, *Nat. Commun.*, 2013, 4, 2905–2912.
- 14 U. Maitra, U. Gupta, M. De, R. Datta, A. Govindaraj and C. N. R. Rao, Angew. Chem., Int. Ed., 2013, 52, 13057–13061.
- 15 Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi and K. Hashimoto, Nat. Commun., 2013, 4, 2390-2396.
- 16 H. Zhu, M. L. Du, M. Zhang, M. L. Zou, T. T. Yang, L. N. Wang, J. M. Yao and B. C. Guo, *J. Mater. Chem. A*, 2014, 2, 11728–11741.
- 17 H. Zhu, M. L. Du, M. Zhang, M. L. Zou, T. T. Yang, Y. Q. Fu and J. M. Yao, *J. Mater. Chem. A*, 2014, **2**, 7680–7685.
- 18 E. B. Bi, H. Chen, X. D. Yang, W. Q. Peng, M. Gratzel and L. Y. Han, *Energy Environ.Sci.*, 2014, 7, 2637–2641.
- 19 T. Y. Wang, J. Q. Zhuo, K. Z. Du, B. B. Chen, Z. W. Zhu, Y. H. Shao and M. X. Li, *Adv. Mater.*, 2014, 26, 3761–3766.