欢迎访问 李仁宏 课题组 >> 课题组动态 >> 正文

课题组动态

祝贺杜向博文同学在《Chemical Engineering Journal》上发表论文

   本课题组研究生杜向博文以第一作者在《Chemical Engineering Journal》上发表论文《Highly efficient and robust nickel-iron bifunctional catalyst coupling selective methanol oxidation and freshwater/seawater hydrogen evolution via CO-free pathway》。影响因子达到了16.74。


论文摘要:

          The production of green hydrogen by water electrolysis is often kinetically limited by the sluggish oxygen evolution reaction (OER) at the anode. Here, we prepared a bifunctional nickel foam supported NiFe2O4 spinel catalyst (i.e. NiFe2O4/NF) that is capable of facilitating the coupling of hydrogen evolution reaction (HER) with selective methanol oxidation reaction (SMOR) in seawater to produce formate via a CO-free pathway. At a cell potential of 2.0 V, the NiFe2O4/NF||NiFe2O4/NF catalyzed HER-SMOR system produces remarkably high current density (>800 mA cm− 2 ) with high Faradaic efficiencies (FE) at both electrodes (>96 % for HER and >95 % for SMOR to formate). The NiFe2O4/NF||NiFe2O4/NF HER-SMOR system also exhibits excellent stability over 48 h of continuous operation. With H2 being the only gaseous product, the HER-SMOR electrolysis system could operate in the absence of a membrane. Furthermore, the NiFe2O4/NF||NiFe2O4/NF electrodes are sufficiently robust for continuously catalyzing HER-SMOR in seawater electrolysis, showing no sign of deactivation or chlorine oxidation reactions over 6 h of continuous operation at a high current density of 700 mA cm− 2 . Mechanistic investigation and DFT calculations reveal that SMOR proceeds via a CO-free pathway, with Ni and Fe as the active sites for methanol and OH activation, respectively.

Copyright © 2008-2016 材料科学与工程学院 All Rights Reserved

地址:杭州下沙高教园区2号大街928号